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Abstract

With quantity-based innovation targets and subsidy programs launched since the

mid-2000s, China has seen a patent surge, accounting for 46% of the world’s total

patent applications in 2020; however, the overall patent quality has been declining

after 2008. This paper develops a Schumpeterian growth model featuring innovating

firms’ quantity-quality trade-off between radical and incremental innovations, and

decomposes subsidies’ aggregate impact into quantity and quality channels. We cal-

ibrate the model to Chinese firm-level data in the early 2010s. Our quantitative anal-

ysis shows that the quality channel effects are negative and dominant, and quantity-

based subsidies in that period reduce the TFP growth rate and welfare by 0.19 percent-

age points and 3.31%, respectively. We evaluate welfare gains under a constrained

planner’s problem, and propose skill subsidies which are quality-biased and effec-

tively recover the optimal allocation.
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1 Introduction

Subsidies are widely used to stimulate innovation. This paper studies the impact of inno-

vation subsidies in China since the middle 2000s, when, partly due to the fear of falling

into the “middle-income trap”, the Chinese government launched a series of initiatives to

ensure the country’s success in transiting to an innovation-oriented economy (Ding and

Li, 2015). We first document that innovation targets set by the central and local govern-

ments are largely quantity-based. The quantity of patents, in particular, has been exten-

sively adopted as a concrete indicator of innovation achievement. Under a large scale of

innovation subsidies to help achieve these targets, China’s invention patent applications

have increased from slightly above 10 thousand in 1990, or 1.08% of the world’s total,

to around 1.5 million in 2020, accounting for 45.69% of the global total, raising concerns

about the underlying patent quality.

To study the macro impact of such subsidies from micro-level incentives, we collect a

panel of innovating firms from 1998 to 2013 and use the information on forward citations

to classify patents into high-quality radical ones and low-quality incremental ones. Con-

sistent with anecdotal evidence, we find a robust decline in the share of radical patents

after the mid-2000s, in terms of the absolute level, and especially compared to a clear ris-

ing trend before the mid-2000s. In addition, the relative quality of incremental patents to

radical ones, measured as the ratio of the average number of forward citations received by

the former to the latter, displays a clear decline after the mid-2000s, suggesting a crowding

effect that as more incremental innovations are pursued, their average impact decreases.

Then we develop a structural growth model featuring innovating firms’ endogenous

choices between radical and incremental innovations to quantitatively study the impact

of quantity-based subsidies. Our model builds on Schumpeterian models with hetero-

geneous innovations (Akcigit and Kerr, 2018). Radical innovations significantly impact
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productivity, while incremental innovations build on existing radical ones and make

marginal improvements, with their impact gradually diminishing as more incremental

innovations are pursued. Different from existing works in which radical and incremental

innovations are random outcomes, we introduce a scarce R&D resource and allow the

pursuit of different kinds of innovations to be endogenous, which generates a micro-level

quantity-quality trade-off between radical and incremental innovations. Motivated by

empirical patterns, we further assume that radical innovations are more skill-intensive in

that a larger proportion of skilled labor is needed to realize one such invention.

Policymakers cannot precisely identify the quality of innovations and base their poli-

cies on the number of innovation outcomes, e.g., the number of patents. As firms face a

trade-off between radical and incremental inventions, quantity-based subsidies encour-

age overall innovations but also bring an undesired shift of R&D efforts toward cheaper

but incremental trials. Under a general equilibrium context, when all innovating firms

expand their R&D expenditures, the skill premium also increases, further tilting firms’

R&D efforts away from the more skill-intensive radical innovations. To dissect their

growth and welfare implications, we decompose the impact of quantity-based subsidies

into three channels, each corresponds to an empirical finding just mentioned: a positive

quantity channel that the subsidies promote innovations and creative destruction; a nega-

tive quality-composition channel that quantity-based subsidies lower the aggregate weight

on radical innovations; and a negative quality-crowding channel that more incremental tri-

als reduce their average production value.

We then calibrate the theoretical model to moments of Chinese innovating industrial firms

from 2011 to 2013. In particular, we use moments regarding radical and incremental

patents in the data to discipline parameters related to radical and incremental innova-

tions in the model, showing that the introduction of quantity-based innovation subsidies
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accounts for 29% of the quantity surge, 56% of the decline in the radical patent share, and

75% of the decline in the relative quality of incremental patents observed between the pre-

and post-2008 periods. Although the quantity channel tends to enhance overall growth,

the quality channels are much more dominant, especially the quality-crowding channel.

Overall, quantity-based subsidies reduce the equilibrium growth rate by 0.19 percentage

points, or 10% of the actual TFP growth decline from 2001-2007 to 2008-2014, and reduce

the aggregate welfare by 3.31%.

China is still relatively scarce in innovative, skilled labor despite its fast economic catch-

up. In 2018, 27% of the Chinese population between age 25 and 34 have completed tertiary

education, which is much lower than in other major patent-holding economies. Within

the model’s framework, we further evaluate the impact of two alternative subsidies: ed-

ucation subsidy and skilled labor subsidy, which effectively recover the social planner’s

allocation. In the model, skill is acquired through formal education before a worker en-

ters the labor market, and these subsidies raise the skill supply. Since radical innovations

are more skill-intensive, increasing the supply of skilled labor substantially reduces the

R&D cost of pursuing such inventions. Thus, in contrast to quantity-based innovation

subsidies, the alternatives we propose are quality-biased — they significantly promote

aggregate growth and welfare by improving both innovation quantity and quality.

Our paper highlights the importance of considering firms’ endogenous responses in de-

signing effective innovation policies. In that regard, the paper is related to three strands of

literature. The first is the creative destruction literature with heterogeneous firms (Klette

and Kortum, 2004; Akcigit and Kerr, 2018; Acemoglu et al., 2022). In a model of creative

destruction, Ates and Saffie (2021) characterize a quantity-quality trade-off induced by fi-

nancial frictions among entrants, while such trade-off in our model is on the intensive in-

novation margin. Our model builds on Akcigit and Kerr (2018), which develops a model
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in which firms pursue radical and incremental innovations randomly. As mentioned, the

key deviation in our model is to endogenize this decision to capture the quantity-quality

trade-off faced by innovating firms. We also incorporate heterogeneity of R&D input

structure and human capital, a crucial dimension for innovation in developing countries.

Our work also relates to studies investigating China’s R&D policies and patent surges (Hu

and Jefferson, 2009; Fang et al., 2017; Ang et al., 2014). Li (2012) finds that local innovation

subsidy programs help stimulate patent applications. Chen et al. (2019) find that subsi-

dies positively impact incremental innovations but not radical ones. A few recent papers

(Chen et al., 2021; Branstetter et al., 2023; Wei et al., 2023) take a more structural approach

to examine China’s innovation policies. Wei et al. (2023) studies the InnoCom program

in a three-stage static framework and finds that it hurts welfare due to bureaucratic bean

counting, and patent trade exacerbates that loss. Our model of creative destruction em-

phasizes firms’ quantity-quality trade-off and the role of quality crowding. Branstetter et

al. (2023) investigate China’s patenting system, and they argue that narrow patent protec-

tion in China skews R&D efforts toward incremental innovations. Our paper addresses a

similar issue but caused by innovation subsidies. König et al. (2022) study the impact of

R&D misallocation in China. They find that a large subsidy might even reduce the growth

rate as it distorts firms’ imitation-innovation decisions. Subsidies may hurt growth in our

framework but through a different channel.

Lastly, this paper is related to research on the role of human capital in innovation and eco-

nomic growth, dating back to Nelson and Phelps (1966). In Vandenbussche et al. (2006),

as innovation is more intensive in skilled labor than imitation, skilled labor significantly

impacts growth when a country approaches the technology frontier. Akcigit et al. (2020)

incorporate higher education policy into an endogenous growth model. They find that the

impact of R&D subsidies can be strengthened if combined with higher education policies
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that alleviate financial constraints for the young. Our paper follows this line of research

in emphasizing the input dimension of R&D and the importance of human capital and

education in promoting innovation.

The rest of the paper is organized as follows. Section 2 provides institutional background

and describes motivational facts, and Section 3 introduces the model. The quantitative

analysis is the focus of Section 4. Concluding remarks are presented in Section 5.

2 Institutional Background and Motivational Facts

This section first provides an overview of quantity-based innovation targets set by China’s

central and local governments since the mid-2000s and the associated patent surge. We

then construct firm-level panel data to study the decline in patent quality in recent years.

2.1 Institutional Background and Patent Quantity

China started to emphasize the importance of building an “innovation-oriented” econ-

omy in the mid-2000s. In 2006, the Chinese central government released the Outlines of

Medium and Long-term National Plan for Science and Technology Development (2006-2020),

which pronounced the building of an innovative economy as a new national strategy

(Ding and Li, 2015; König et al., 2022). One critical and specific metric in the documenta-

tion is that by 2020, the total number of granted invention patents by Chinese nationals

rank top 5 globally.1 In 2010, China National Intellectual Property Administration issued

the National Patent Development Strategy 2011-2020, which explicitly set the following quan-

tity targets:
1Other specific targets listed in the documentation include the following. By 2020, the share of total R&D

expenditures in GDP will achieve 2.5% or more; the contribution of technological progress to economic
growth will account for more than 60%; the dependence on foreign technology will reduce to less than 30%;
the total number of forward citations of international scientific papers by Chinese nationals will rank top 5
globally.
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1. The total number of invention patents will rank top 2 in the world, and total patents
reach 2 million in 2015;

2. Invention patents per million population will increase by 100% in 2015 and by 300%
in 2020;

3. At least 8% of above-scale industrial enterprises will apply for patents in 2015 and
10% in 2020.

With these documents released by the central government, many local governments have

also made explicit targets on the number of patents. In Table A.1 in Appendix, we list

several patent quantity targets set in the 2000s and 2010s in developed areas like Beijing

and Shanghai, as well as in relatively less developed northeastern Heilongjiang province

and southwestern Guizhou province.

To help achieve these targets, the central and local governments issued supportive poli-

cies to promote firms’ innovation activities. To encourage patent filing, the State Intellec-

tual Property Office issued the Measures of Patent Fee Deferral in 2006. Many local gov-

ernments have since issued additional incentives for patenting (Ding and Li, 2015). For

example, the Beijing city government subsidizes up to 2,150 Chinese Yuan (CNY) for an

invention patent application. The Zhejiang provincial government grants each invention

patent a one-time 3,000 CNY subsidy. By 2008, 29 of 32 provincial governments have in-

troduced patent subsidy programs in mainland China (Li, 2012).2

With the explicit quantity targets and associated subsidy policies, China has seen a dra-

matic surge in the total number of invention patents.3 Figure 2.1 presents the evolution

of the total number of newly applied patents (panel (a)) and patents per researcher (panel

(b)). China’s total number of patent applications in the 1980s and 90s was substantially

smaller than the US. It accounted for 1.02% of the world’s patent applications in 1990. In

2Another widely adopted policy is the intellectual property rights pledge financing (Ding and Li, 2015).
3There are three types of patents in China: invention, utility model, and industrial design. Invention

patents account for 29% of total Chinese applications in 2020. As applications of the last two do not require
substantial review, we focus on invention patents, referred to as “patent” throughout the paper.
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2011, China replaced the US as the world’s No.1 patent application country. By 2020, this

share increased to 45.69% of the world’s total. The number of patents per researcher in

China started at a much lower level in the early 1990s. Both countries progressed at a

comparable rate in the 1990s. The US-China gap shrank in the 2000s, suggesting China’s

technological catch-up in that decade. Over the recent 10-15 years, when the Chinese

government set quantity targets and adopted various innovation subsidies, patents per

researcher in China have increased much faster than in the US. By 2018, an average Chi-

nese researcher produced almost twice as many patents as their US counterparts.4

Figure 2.1: Patent Quantity in China and the United States
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(b) Patents per Researcher

Note: This figure shows the number of patents (millions) and patents per researcher in China and the US.

The patent surge raises concerns on whether Chinese innovators are becoming more pro-

ductive or are incentivized to focus primarily on quantity while ignoring the underlying

quality of patents, which we, by assembling a panel data of Chinese innovating firms,

turn next to.

2.2 Firm-Level Data and Patent Quality

Data Source. We construct an input-output panel data of firm-level R&D activities from

three sources: (i) Annual Survey of Industrial Enterprises (ASIE), covering above-scale
4Appendix A.1 confirms that the evolution of patent grants exhibits very similar patterns.
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Chinese industrial firms from 1998-2013; (ii) a supplementary Firm Innovation Activity

Database containing industrial firms’ R&D personnel and expenditures from 2008-2014;

(iii) Innography and Orbis Patent Database, providing patent information from 1985 on-

wards. We focus on applied and eventually granted patents and restrict to domestic firms

with records of at least one invention patent during the sample period.5

We label a Chinese patent as radical if it is cited by at least one US patent and the gap

in application years between the cited and citing patents must be within 5 years, and as

incremental otherwise.6 Figure 2.2 presents the evolution of patent quality in our firm-

level sample. The left panel shows the share of radical patents, which displays a clear

rising trend from 1998 to 2007 — which partly reflects increasing international exposure

and the associated learning process of Chinese innovating firms starting from a low level

(Baslandze et al., 2021) — and declines from 2008 onward. The post-2008 decline is more

significant if compared to the pre-2008 trend. In the right panel, we show the relative

quality of incremental to radical patents, defined as the ratio of the average number of

forward citations of the former to the latter. That ratio is relatively stable from 1998 to

2007, but steadily declines after 2008. As more incremental patents are created, their av-

erage quality declines, suggesting a crowding effect of incremental innovations.7

Lastly, we present the firm-level skill composition of researchers, which is later used to in-

fer the heterogeneous innovation skill intensities in model calibration. We identify a firm

as high-type if it creates at least one radical patent from 2008 to 2013, and as low-type oth-

erwise. Among an innovating firm’s R&D personnel, we label those with a medium or

5Appendix A.2.1 describes data sources. Construction process of the firm-level sample is given in Ap-
pendix A.2.2. Appendix A.2.3 details variable construction.

6We downloaded and updated patent data in October 2022, which is 9 years after the last year (2013) in
our sample. The five-year restriction is to minimize the impact of truncation.

7These findings are robust to alternative definitions of radical patent and are evident across firm demo-
graphic characteristics, including ownership, exporting status, industries, patent categories, entrants vs.
incumbents, internal vs. external patents as detailed in Appendix A.2.5.
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Figure 2.2: Evolution of Patent Quality in China
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Note: A patent is classified as radical if it is cited by 1 U.S. patent and the gap in application years between
the cited and citing patents must be within 5 years. The relative quality of incremental to radical patents
is the ratio of the average number of forward citations of the former to the latter. The high volatility at the
beginning few years is largely due to limited sample size, as shown in Table A.3.

senior professional title as skilled personnel. Skill intensity, defined as the ratio between

skilled personnel and total R&D personnel, is 34.12% for high-type firms and 25.42% for

low-type firms in the 2011-2013 period. More details are provided in Appendix A.2.6.

Facing quantity-based subsidies, firms may find it profitable to maximize the number of

innovations and shift from radical innovations to cheaper incremental ones with lower

quality. A micro-level quantity-quality trade-off that innovating firms experience and

quantity targets may help explain the observed patent surge along with their quality de-

cline. In that spirit, we build a Schumpeterian growth model featuring heterogeneous

innovations to evaluate the aggregate impact of quantity-based innovation policies.

3 The Model

This section develops a growth model with heterogeneous innovations to study the eco-

nomic consequences of quantity-based subsidies. The model is in continuous time, de-

noted by t. The economy admits a representative household that maximizes the dis-
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counted sum of utility

U =
∫ ∞

0
exp(−ρt)

C(t)1−ν − 1
1− ν

dt, (1)

where ρ > 0 is the discount factor, ν the elasticity of intertemporal substitution, and C(t)

is the flow of final good consumed.

There is a final good produced competitively by packaging a continuum of intermediate

varieties

Y(t) =
1

1− ε
N(t)ε

∫ 1

0
qω(t)

εyω(t)
1−εdω, (2)

where yω(t) is the quantity of intermediate good ω, and qω(t) denotes its quality. ε ∈

(0, 1) governs the value-added share of intermediate varieties. N(t) is the number of

packagers whose total supply is fixed at 1. The final good producers’ demand for inter-

mediate variety ω is given by pω = qε
ωy−ε

ω .

Production. Each intermediate good ω ∈ [0, 1] is produced by a firm that currently

owns the leading technology in that product line, that is, offering the highest quality

qω.8 Denote Ω f the set of product lines owned by an individual firm f , and Q f ≡{
qω, ω ∈ Ω f

}
its product portfolio. Denote n f as the cardinality of the set Q f , which

represents the number of product lines that the firm owns and we refer to as “firm size”.

For simplicity, we drop the subscript f when it causes no confusion. A firm that loses all

product lines exits the economy permanently, so we have n ≥ 1 for incumbent firms.

Production of intermediate goods uses unskilled labor yω(t) = q̄(t)`ω(t), where q̄(t) ≡∫ 1
0 qω(t)dω is the economy-wide average productivity at time t, capturing a cross-firm

spillover of innovations. We follow the standard approach in the Schumpeterian growth

8We use “intermediate good”, “intermediate variety” and “product line” interchangeably in the paper.
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literature and assume a two-stage price-bidding game (Acemoglu et al., 2012).9 In equilib-

rium, the firm owning the leading technology can charge a monopolistic price until being

replaced by a successful innovator. Given this setting, the firm that owns the leading

technology in product line ω will charge a constant markup, and the profit is πω = πqω,

where π ≡ ε
[
(1− ε)q̄/w`

] 1−ε
ε is the economy-wide average profit level and a constant

on the balanced growth path as shown below.

R&D Heterogeneity. Intermediate goods firms also spend on R&D to pursue innova-

tions. R&D efforts are assumed to be undirected. Upon a successful innovation, a firm

improves the quality of a random product line by a step-size from its current frontier.10

Innovations are heterogeneous; specifically, two kinds of innovations exist: radical (d) vs.

incremental (m). We use subscript i to index innovations, i.e., i = d, m. Incremental in-

novations build on one existing radical innovation. The quality improvement associated

with radical innovations is fixed and large, while that of incremental innovations is small

and gradually diminishes toward zero.

R&D uses skilled labor, unskilled labor, and research time as inputs. Each firm is endowed

with 1 unit of non-tradable research time. We introduce research time to capture R&D in-

puts that are scarce and non-tradable, such as a manager’s time to supervise projects,

etc.11 When a firm owning n product lines hires hi units of skilled labor, `i units of un-

skilled labor, and uses ei fraction of its research time to pursue innovations of kind i, it

adds one more product line to its portfolio at the following Poisson flow rate

9In stage 1, firms decide whether to pay an arbitrarily small but positive market-entry cost. In stage 2, all
firms that have paid the cost in stage 1 compete in a Bertrand competition. The firm that owns the leading
technology and produces the highest quality goods would announce a limit price, which makes all others
earn a non-positive profit in stage 2. Therefore, they optimally decide not to enter and compete in stage 1.

10We focus on external innovations, which are the vast majority among innovations in China, as shown
in Table A.9. We also craft an extension allowing for internal innovations in Appendix D.4.

11The scarce R&D inputs induce a firm-level trade-off between radical and incremental innovations,
which becomes more clear once we present the innovation cost function.
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Xi = zi n1−φ
(

ei hγi
i `1−γi

i

)φ
, (3)

where zi ≥ 0 is the firm’s R&D productivity in pursuing kind i innovations. Parame-

ter φ ∈ (0, 1) is the elasticity of successful innovations to R&D expenditures. Parameter

γi ∈ (0, 1) governs the skill intensity of kind i innovations. Following empirical results in

Section 2.2, we assume γm < γd; that is, incremental innovations are less skill-intensive

than radical ones.

If firm f successfully adds a product line ω to its portfolio following a radical innovation,

it raises the quality of product ω by

qω(t+) = qω(t) + λq̄(t), (4)

where λ > 0 is an exogenous parameter governing the step-size of radical innovations.

The quality improvement following a successful incremental innovation, however, de-

pends on its distance from the most recent radical innovation, i.e., times of incremental

improvements already created in that product line. Denote τω this distance for product

line ω, that is, if product line ω is experiencing the τω-th incremental innovation from its

most recent radical one, the quality improvement is

qω(t+) = qω(t) + ηατω−1q̄(t), (5)

where η ∈ (0, λ) governs the initial step-size, and α ∈ (0, 1) governs how fast the effect

diminishes. The effect of incremental innovations weakens until a radical one arrives and

resets the clock. This setting captures a positive externality of radical innovations, and a

negative externality of incremental ones, with the latter helping reconcile the crowding

effect documented in Section 2.2.

12



Now we are ready to derive the associated R&D cost functions. Following Klette and Ko-

rtum (2004), it is useful to transform variables into their per line correspondences. Denote

xd ≡ Xd/n as the radical innovation intensity per line, xm ≡ Xm/n the incremental inno-

vation intensity per line, and wh and w` competitive wage rates for skilled and unskilled

labor, respectively. For an individual firm whose innovation intensities are xd and xm, the

associated function of R&D cost per line is given by12

R(xd, xm; zd, zm) =
[
Θd(xd)

1
2 + Θm(xm)

1
2
]2

, (6)

where Θi(xi) ≡ ∆i
(
wh)γi (w`

)1−γi (xi/zi)
1
φ and ∆i ≡ γ

−γi
i (1− γi)

γi−1, for i = d, m. We

further assume φ < 0.5 to maintain a decreasing return to scale in R&D inputs and avoid

corner solutions in xd or xm. The cost function indicates a clear trade-off between radical

and incremental innovations at the firm level, and is a direct consequence of the scarce

research time, e, required in producing both kinds of innovations.13

Quantity-Based Subsidy. Though innovations are heterogeneous in their magnitude of

quality improvement, a successful innovation, radical or incremental, always brings the

firm a new product line. At any point in time t, we assume a successful innovation em-

bodies a certain number of patents — radical innovations correspond to radical patents

and incremental innovations to incremental patents. The total number of active patents a

firm holds is therefore proportional to the number of product lines the firm controls.

We define quantity-based subsidy to innovating firms as any subsidies that reward the

number of active patents a firm holds, i.e., n, disregarding the underlying quality. In

12Under our specification of the innovation production function, a firm’s innovation cost scales up lin-
early with the number of product lines. We craft an extension allowing for decreasing return to scale in
innovation in Appendix D.3.

13In Appendix D.2, we relax this assumption and examine the consequences of a weakened firm-level
quantity-quality trade-off.
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particular, we use the form n× bnq̄ in the model, where bn denotes the detrended amount

of subsidy per patent. Conceptually, the bn term summarizes all explicit subsidies —

cash or cash-like subsidies that show up in the firm’s balance sheet, and implicit ones —

cheaper land cost, accessibility to loans, etc., that an innovating firm receives as long as

the subsidies are quantity-based.14

Incumbent Firms. The economy admits two types of firms regarding R&D productivity.

The high-type (H) firms are capable of pursuing both radical and incremental innovations

(zHd, zHm > 0). The low-type (L) are capable of pursuing only incremental innovations

(zLd = 0, zLm > 0).15 The state variables of an incumbent firm include its type j = H, L;

its product portfolio Q; and the economy’s average productivity q̄. Denote r the interest

rate and δ the creative destruction rate. The value function for a type j firm is written as

rVj(Q, q̄)− V̇j(Q, q̄) = max
xjd,xjm

∑
qω∈Q

{
πqω︸︷︷︸
profit

+ δ
[
Vj
(
Q\{qω}, q̄

)
−Vj(Q, q̄)

]︸ ︷︷ ︸
loss from creative destruction

}

+ n× xjd

[
Eω′Vj

(
Q ∪ {qω′ + λq̄}, q̄

)
−Vj(Q, q̄)

]
︸ ︷︷ ︸

return from radical innovations

+ n× xjm

[
Eω′Vj

(
Q ∪ {qω′ + ηατω′−1q̄}, q̄

)
−Vj(Q, q̄)

]
︸ ︷︷ ︸

return from incremental innovations

− n× R(xjd, xjm; zjd, zjm)︸ ︷︷ ︸
R&D cost

+ n× bnq̄︸ ︷︷ ︸
quantity-based subsidy

.

(7)

The first line is each product line’s profit flow, plus the value loss from creative destruc-

tion. Q\{qω} denotes the remaining portfolio after losing line ω to a successful innova-

tor. The second line is the value change from a successful radical innovation of the firm,

which adds product line ω′ into the portfolio. The expectation is over ω′ as which line the

innovation lands on is random. The third line is the value change following a successful

14In the model, subsidizing the patent stock: n × bn q̄, or subsidizing new patents: nx × bx q̄, generate
identical outcomes. See more details in Appendix B.4.

15Note zLm might differ from zHm. We introduce this firm heterogeneity for quantitative purposes. The
setting helps us infer R&D input structure from observable firm-level data in the quantified model.
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incremental innovation. The last line includes the R&D cost and quantity-based subsidies.

The value functions are linear in the economy’s average productivity q̄, making detrend-

ing all values by q̄ straightforward. Another useful property is that firms of the same

type always choose the same innovation intensity per line, regardless of their differences

in product portfolio or size.16 By construction, low-type firms optimally choose xLd = 0.

We end up tracking three innovation intensities: xHd, xHm for high-type firms, and xLm

for low-type firms. For the remaining theoretical analysis, we focus on high-type firms,

as they are the ones facing a quantity-quality trade-off between radical and incremental

innovations.

Entrant Firms. At any point, there is a total mass of 1 of potential entrants pursuing

incremental innovations at a fixed Poisson rate xE. Upon a successful innovation, the

potential entrant enters the economy with one product line in its portfolio. Entrants are

of low-type by default; however, after making a one-time overhead investment of K(p) =

[− ln(1− p)− p] χq̄, they receive probability p of becoming high-type. The value function

for a potential entrant is

rVE = xE

[
max

p

{
pVH + (1− p)VL − K(p)

}
−VE

]
, (8)

where Vj ≡ Eω′Vj

({
qω′ + ηατω′−1q̄

}
, q̄
)

, j = H, L are the expected values of a type j firm

with one product line. Since entrant firms are ex-ante identical, they end up choosing the

same amount of overhead investment. We denote p∗ as the associated probability.

Education. The representative household also supplies a mass L of workers, each fac-

ing a constant death rate of d > 0. At each point, a flow dL of young workers join the

16This property is obtained as the elasticity of innovation on firm size n is set as 1− φ in the innovation
production function, so the innovation cost scales up linearly with the number of product lines. We craft
an extension allowing for decreasing return to scale in innovation in Appendix D.3.
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economy, who work as unskilled without any investment in education; however, they

can spend time in school to become skilled. Upon entry, each individual randomly draws

a talent type θ from a Pareto distribution.17 It requires 1/θ units of education service

for an individual of type θ to become skilled. Education service is produced by existing

skilled labor employed in education at the competitive wage rate and with technology

S = ξ hteacher, where ξ > 0 captures the overall efficiency of the economy’s education

infrastructures. Getting education is a preferable choice if and only if the expected life-

time return from doing so — earning a skilled wage minus paying the education cost —

exceeds the lifetime value of earning an unskilled wage.18

3.1 Equilibrium

We focus on a balanced growth path equilibrium, in which the average productivity of

the economy, q̄(t), grows at a constant rate g, while other aggregate variables grow pro-

portionally and all relevant distributions are stationary. We track two distributions, one

over τ, i.e., the step-size of incremental innovations, and the other over n, i.e., firm sizes.19

Denote δd and δm the creative destruction rate due to radical and incremental innovations,

respectively. The expected step-size of an incremental innovation is given by

η̄ = η
/(

α +
1− α

δd/δ

)
. (9)

The expected quality improvement from incremental innovations decreases with a faster

decay rate, i.e., a smaller α. Additionally, as the fraction of radical innovations in the

economy, δd/δ, decreases, the expected step-size also becomes smaller. This property al-

lows us to simultaneously explain the decline in the share of radical patents, as well as

the widening gap between incremental and radical patents documented in Figure 2.2.

17More specifically, we use Pareto distribution P
{

θ ≤ θ̃
}
= 1− θ̃−2, for θ̃ ∈ [1, ∞).

18Appendix B.1 shows that young people obtain education when surpassing a certain talent threshold θ∗,
the value of which depends on the skill premium as well as productivity in the education sector.

19Detailed derivations regarding these two stationary distributions are given in Appendix B.2.
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Denote µj,n the mass of type j firms who own n product lines. We can write the creative

destruction rates δd = ∑
n

µH,n × nxHd; δm = ∑
j

∑
n

µj,n × nxjm + xE. The aggregate rate of

creative destruction is δ = δd + δm. Moreover, the total number of active product lines

sums to 1. Formally, the following proposition holds.20

Proposition 1. Definition of the creative destruction rate δ guarantees that ∑
j

∑
n

µj,n × n = 1.

3.2 Properties of the Economy

The Quantity-Quality Trade-off. High-type firms in the economy face a quantity-quality

trade-off between creating more innovations and creating better innovations. Innovation

subsidies may impact such trade-offs in an undesired way, as seen from an individual

firm’s optimal decisions. For expositional convenience, we drop the firm type subscript j

whenever it causes no confusion.

Innovating firms’ value function takes the form V(Q, q̄) = ∑
ω

Aqω + nBq̄. The first term

denotes profit from owning product lines, while the second contains net values from

R&D. Regarding firms’ choices over innovations, we have the following proposition.21

Proposition 2. The ratio between radical and incremental innovation intensities satisfies

xd
xm

∝
A(1 + λ) + B
A(1 + η̄) + B︸ ︷︷ ︸
innovation return

×
(

wh

w`

)−(γd−γm)

︸ ︷︷ ︸
input structure

. (10)

The term “innovation return” on the right-hand side captures the ratio of returns between

radical and incremental innovations. The direct return of radical innovations is from its

productivity improvement effect, as captured by A(1 + λ). Similarly, that of incremental

20Proof of Proposition 1 can be found in Appendix B.3.
21Appendix B.4 derives the value function and proves Proposition 2.
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innovations is captured by A(1 + η̄). The fact λ > η̄ indicates that the direct return of

radical innovations is greater.

The indirect return, B, is identical for both kinds of innovations and is largely affected

by subsidies. A sizable subsidy shrinks the gap in total returns between radical and in-

cremental innovations and raises firms’ incentive to pursue proportionately more of the

latter. The term “input structure” indicates that, if all firms are doing more R&D, the

equilibrium skill premium will rise, making skill-intensive radical innovations more ex-

pensive. Consequently, firms are further incentivized to pursue incremental innovations.

Growth and Welfare. Along a balanced growth path, the aggregate welfare is

U =
1

1− ν

[
C0

1−ν

ρ− (1− ν)g
− 1

ρ

]
. (11)

A critical determinant of welfare is the aggregate growth rate, g = δdλ + δmη̄, where η̄

denotes the expected step-size of incremental innovations. As δd and δm represent ag-

gregate quantity of radical and incremental innovations, the growth rate can be viewed

as a weighted sum of their step-sizes.22 Accordingly, the growth rate differential, e.g.,

between economies with and without a particular policy, can be decomposed into

∆g = ∆δ×
[

δd
δ

λ +

(
1− δd

δ

)
η̄

]
︸ ︷︷ ︸

(i) quantity-creative destruction

+ δ×
[

∆
δd
δ
× (λ− η̄)

]
︸ ︷︷ ︸

(ii) quality-composition

+ δ×
[(

1− δd
δ

)
× ∆η̄

]
︸ ︷︷ ︸

(iii) quality-crowding

. (12)

The first term refers to the quantity channel, while the second and third are the qual-

ity channels. The quantity-creative destruction term captures that the aggregate growth

rate changes if a policy induces changes in the aggregate creative destruction rate, δ, or

22Difference between the contribution of one extra radical innovation versus that of an incremental one
is (λ− η̄) + δm(∂η̄/∂δd − ∂η̄/∂δm). The latter term corresponds to the externality induced by our particular
way of modeling the quality decay of incremental innovations.
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equivalently the total number of innovations. As aforementioned, we focus on external

innovations which are the vast majority in China. A policy that changes the aggregate

share of radical innovations, δd/δ, further affects aggregate growth through (a) it changes

the composition of radical and incremental innovations, whose impacts on productivity

are different, captured by the second quality-composition channel; and (b) changing the

average number of incremental innovations following a radical one in any product line

changes the average productivity impact of incremental innovations, which we label the

third quality-crowding channel. The three channels connect to the patent surge in Figure

2.1, and the two facts regarding patent quality decline in Figure 2.2 in the Chinese context.

A quantity-based subsidy might promote overall growth and welfare through the quan-

tity channel; however, the positive effect could be compromised or even overwhelmed if

the subsidy negatively impacts innovation quality. Which effect dominates is a quantita-

tive issue addressed in the following section.

4 Quantitative Analysis

This section first calibrates the model using Chinese data, and evaluates the impact of

quantity-based subsidies on patent quantity surge, quality decline, and the overall TFP

growth. We then analyze a planner’s problem, which yields a constrained first-best, and

propose an alternative, quality-biased, innovation policy — subsidizing the skill, which

we show effectively recovers the planner’s allocation.

4.1 Calibration and Model Fit

To calibrate the model’s benchmark economy to 2011-2013 aggregate- and firm-level data,

we further include two extra policy parameters: the corporate tax rate u — hence firms’

profit flow changing from πq to (1− u)πq — and the R&D tax credit multiplier br, i.e.,
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the total R&D expenditures changing from R(xd, xm) to (1− bru)R(xd, xm).

Calibration Strategy. The extended model has 20 parameters. We start with those that

can be externally calibrated, directly inferred, or taken from the literature. We set the dis-

count rate ρ = 0.02. For the inverse intertemporal substitution elasticity, we set ν = 3

in the baseline and check the robustness with alternative values. The elasticity of substi-

tution in final goods production ε is set to match a profit rate of 22% among ASIE firms.

The total population L is normalized to 1.

In the R&D sector, we follow Acemoglu et al. (2018) relying on microeconometric innova-

tion literature, and estimate an innovation elasticity parameter φ = 0.49.23 Without loss

of generality, we assume that the initial step-size of incremental innovations η = αλ, with

the latter two parameters calibrated internally. In the education sector, we set the death

rate d so that an individual works for around 35 years. We set u and br to match a 25%

corporate tax rate and a 150% tax credit multiplier in China.24

The remaining 11 parameters are internally calibrated to moments, which, unless stated

otherwise, are calculated from our firm-level sample for 2011-2013. For each of the pa-

rameters, we pick a most informative moment implied by the model. The first set of

remaining parameters regards R&D productivity. The model contains three such param-

eters: radical and incremental innovation productivity for high-type firms, zHd and zHm;

and incremental innovation productivity for low-type firms, zLm. To discipline zHm and

zLm, we use the average R&D intensity, defined as the ratio of total R&D expenditures to

value-added,25 of high- and low-type firms. The ratio zHd/zHm affects the share of radi-

23We regress the number of patents on (log) R&D expenditure, controlling for (log) R&D staff, as well as
year, location (province), industry, ownership types, and establishment year fixed effects, using the Poisson
quasi-maximum likelihood estimator with robust standard errors clustered at the firm level. The estimate
is quite close to values used in the literature.

24The values of all externally calibrated parameters and their sources are summarized in Table C.1.
25In the model, firms with the same R&D productivity choose the same level of R&D expenditures per
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cal innovations high-type firms choose to pursue. Therefore, we use the share of radical

patents, to discipline the value of zHd.

The second set of parameters regards skill intensities in R&D: γd and γm. Recall that low-

type firms are creating only incremental patents, so we can use the observed skill intensity

of them to discipline γm. With the value of γm determined, we can further discipline γd

by targeting the observed skill intensity of high-type firms.

We pin down the amount of subsidy, bn, by the aggregate subsidy-to-R&D expenditure

ratio.26 Following the formula of aggregate growth rate, we set the step-size of radical

innovations, λ, to match an annual TFP growth rate of 1.97% in 2008-2014 estimated by

Bai and Zhang (2017). As we map step-size of incremental innovations to the number

of forward citations received by incremental patents, the decay rate α, which determines

the average step-size of incremental innovations, can be disciplined by the ratio between

average forward citations received by incremental and radical patents.27

We use the skill premium to discipline productivity in the education sector ξ, which de-

termines the total supply of skilled labor and the equilibrium wage rates.28 Consistent

with the model’s setting, entrant firms’ innovation rate xE is disciplined by the share of

patents created by new entrants in the economy. The cost coefficient for entrants to be-

come high-type, χ, is set to match the percentage of high-type firms among incumbents.

In the end, we jointly calibrate all 11 parameters to minimize the total sum of distance

line, but their value-added may differ due to idiosyncratic draws of product quality. “Average” means a
within-type semi-aggregation that gives a “representative” value-added for each type of firm.

26In the data, we define subsidy as the sum of government research funds, subsidy to innovative firms in
the ASIE database, and HTE tax exemptions, where HTE refers to High-Tech Enterprises. HTE recognition,
also known as the InnoCom Program, is a critical pro-innovation subsidy program China has initiated. For
more discussion on HTEs, please see Appendix C.4.

27Appendix C.2 provides more details.
28To obtain the skill premium, we run a Mincer regression using data from the Urban Household Survey

2009, the coefficient in front of the dummy for “graduate degree” is 2.43. Specifically, we regress wage on
the education group dummy controlling for household age, age squared, gender, race, and marital status.
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between model-generated and data moments. Table 4.1 summarizes the internally cali-

brated parameters and their corresponding target moments.

Table 4.1: Internally Calibrated Parameters

Para Equation Meaning Target

zHd (7) H-type’s radical productivity share of radical innov.
zHm (7) H-type’s incremental productivity H-type’s R&D intensity
zLm (7) L-type’s incremental productivity L-type’s R&D intensity
γd (3) skill intensity in radical innov. H-type’s skill intensity
γm (3) skill intensity in incremental innov. L-type’s skill intensity
bn (7) quantity-based subsidy subsidy-to-R&D ratio
λ (4) step-size of radical innov. TFP growth rate
α (5) speed of quality decay average citation ratio
ξ education productivity skill premium
xE (8) entrants’ innov. rate entrants’ patent share
χ cost of becoming H-type fraction of H-type incumbents

Model Fit. Table 4.2 presents the calibration results and model fit, the benchmark model

well replicates the targeted moments. We show how the total distance and each moment

change with respect to the corresponding parameter’s value in Appendix C.3.

Table 4.2: Benchmark Calibration

Para zHd zHm zLm γd γm bn λ α ξ xE χ

Value 1.029 1.038 1.016 0.796 0.453 0.029 0.158 0.862 0.035 0.068 0.138
Data (%) 8.01 17.78 15.02 34.12 25.42 20.42 1.97 33.28 243 21.00 26.98
Model (%) 8.01 17.49 15.02 34.08 25.41 20.44 1.97 33.27 243 20.98 26.99

Estimates of γd and γm confirm that R&D activities pursuing radical innovations rely

more heavily on skilled labor than incremental ones. The relatively large difference be-

tween the two values, 0.796 vs. 0.453, is necessary to account for the observed 9% gap

between skill intensities of high- and low-type firms, as more than 70% of innovations

created by high-type firms, are incremental.
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To give a sense of the magnitude of quantity-based subsidy bn, we contrast it to the av-

erage value-added of innovating firms, and the ratio is slightly above 3%. Our estimate

of λ implies that a radical innovation improves the quality of a product by 15.8%. This

number is close to that obtained in the literature. For example, Akcigit and Kerr (2018)

estimated a step-size of 11.2%, while Acemoglu et al. (2018) reported a step-size of 13.2%.

Our estimate of α = 0.862 is lower than what is reported in Akcigit and Kerr (2018) about

US patents, implying a faster quality decay among incremental patents in China.

The calibrated model generates a creative destruction rate δ = 32.31%. As our paper

corresponds innovation to patents, we define a patent-level creative destruction rate in a

year as the ratio of newly created patents to that of the patent stock. For the 2011-2013

sample period, we estimate a patent-level creative destruction rate that ranges from 30%

to 34%, which is consistent with the model counterpart and close to other estimates in the

literature, e.g., Branstetter et al. (2023).

The model also predicts that firms with a higher innovation intensity have a larger ex-

pected size. We examine the model-generated relative size between high- and low-type

firms and contrast it to the data counterpart (Appendix Table C.2). Lastly, we compare

the patent number distribution in the model and the data (Appendix Figure C.3), and pro-

vide supportive evidence that the magnitude of quantity-quality trade-off implied by the

calibrated model is in line with what’s revealed in the data. Details of the aforementioned

model fit examinations can be found in Appendix C.4.

4.2 Effects of Quantity-Based Subsidies

We are now ready to evaluate the impact of quantity-based subsidies. To that end, we

compare the baseline outcome with a counterfactual economy in which all such subsidies

are shut down, i.e., bn = 0. Table 4.3 presents the results.
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Table 4.3: Innovation Quantity & Quality in the Baseline (B.M.) and Counter-
factual Economy (C.F.) w./o. Quantity-Based Subsidies

Variable Meaning B.M. C.F. ∆Model ∆Data
∆Model
∆Data

δ− xE incumbent innovation 25.53% 23.18% 10.14% 34.57% 29.33%
δd/δ radical share 8.01% 10.39% -22.91% -40.89% 56.03%
η̄/λ step-size ratio 33.27% 39.27% -15.28% -20.27% 75.38%

Note: ∆Model represents changes from the counterfactual to the model benchmark, ∆Data
is changes between the pre- and post-2008 period, both columns are presented in relative
terms. Step-size ratio denotes the relative step-size of incremental to radical innovations.

Quantity-based subsidies implemented in China generate a relative increase of 10.14% in

innovation quantity, measured by incumbents’ creative destruction. However, such sub-

sidies reduce overall innovation quality in two dimensions. Firstly, the share of radical

innovations declines from 10.39% to 8.01%, a relative decrease of 22.91%. Secondly, the

relative quality of incremental to radical innovations decreases, indicated by a decline in

the average step-size ratio from 39.27% to 33.27%, or a relative decrease of 15.28%.

In the data, compared to the pre-2008 period, we see a relative increase of 34.57% in patent

quantity, a relative decrease of 40.89% in the share of radical patents, and a relative de-

crease of 20.27% in the average citation ratio between incremental and radical patents.29

Our quantified model implies that quantity-based subsidies account for about 29% of the

patent surge, 56% of the radical share decline, and 75% of the widening gap between in-

cremental and radical innovations, observed in the post-2008 period.

By changing firms’ innovation incentives, quantity-based subsidies further affect aggre-

gate growth and welfare. In our exercise, the aggregate growth rate decreases from 2.16%

in the counterfactual economy without subsidies to 1.97% in the baseline. Bai and Zhang

(2017) report that the Chinese TFP growth rate decreases by 1.91 percentage points, from

29See Appendix D.1 for details of the estimation. Essentially we fit a linear pre-2008 trend and extrapolate
that trend to obtain the “natural” level for years after 2008. By calculating the deviation of actual values
from these predicted values in relative terms, we obtain and report the relative changes here.
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3.88% in 2001-2007 to 1.97% in 2008-2014. A drop of 0.19 percentage points in the model’s

TFP growth rate accounts for about 10% of the change between the pre- and post-2008

periods in the data.

We then follow equation (12) and decompose such effects into three channels, as shown

in Table 4.4. Subsidies raise innovation quantity, leading to a 0.17 percentage points in-

crease in aggregate growth rate; however, this positive quantity effect is overwhelmed by

the negative quality effects. A pool of proportionately less radical innovations reduces

growth. This channel, which corresponds to δd/δ, brings a 0.07 percentage points drop in

aggregate growth. In addition, the average productivity enhancement from incremental

innovations falls as quantity-based subsidies induce more incremental R&D trials. This

last channel, which corresponds to η̄/λ, brings a 0.26 percentage points drop in aggre-

gate growth rate. Overall, the quality-crowding effect dominates, generating a negative

net effect on growth. As a result, the introduction of quantity-based subsidies causes a

welfare loss of 3.31% to the economy.

Table 4.4: Growth Decomposition

∆Growth (i) quantity (ii) quality-composition (iii) quality-crowding

-0.19 0.17 -0.07 -0.26 (p.p.)
-89.47% 36.84% 136.84%

Note: For each of the channels, we add the corresponding change in (i) δ; (ii) δd/δ;
(iii) η̄ to the pre-2008 economy, and see how it affects the aggregate growth rate. The
second row shows the contribution of each channel, calculated by dividing the corre-
sponding number by -0.19 p.p.

To summarize, although quantity-based subsidies promote overall innovations, they also

skew R&D efforts toward incremental innovations, hence imposing negative effects on

growth and welfare. Among the undesirable consequences, quality-crowding, i.e., the

average quality of incremental innovation declines as more such innovations are pur-

sued, accounts for most of the losses. Note the growth and welfare implications are based
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on the comparison between two balanced growth paths, while what happens on the tran-

sitional path is not addressed in the analysis. Last, the assumption of scarce research time,

together with parameter values regarding the degree of quality decay and heterogeneity

in skill intensities, determines the strength of the three channels and the sign of the net

impact. We present a formal discussion of them in Appendix D.2.

The baseline model, designed to deliver a clean characterization of the firm-level quantity-

quality trade-off and facilitate aggregation, is subject to two oversimplification concerns.

One is that the innovation cost scales up linearly with firm size, the other resides in the

assumption that all innovations trigger creative destruction, i.e., being external. To alle-

viate these concerns, we first extend the model to allow for decreasing return to scale in

pursuing innovations. In another extension, we introduce internal innovations as a third

choice for incumbent firms. Appendix D.3 and D.4 provide details on the model setting,

calibration, and the growth and welfare implications of these two extensions, respectively.

The extended models deliver similar results to those in the baseline case, reaffirming the

robustness of the conclusions.

4.3 Quality-Biased Policy

This section analyzes the implementation of a constrained planner’s allocation, and ac-

cordingly, proposes innovation policies that are quality-biased. In particular, we allow

the planner to decide the skill supply but let individual firms produce and price as in the

market economy, as we are not interested in alleviating the monopoly distortion. Since

the economy contains an education sector with endogenous creation of skilled labor, the

planner needs to choose a talent threshold above which the young shall obtain education,

θ∗SP, to maximize social welfare.

Social welfare, as defined in equation (11), is a hump-shaped function of the education
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threshold. An increase in skill supply initially raises welfare as it promotes innovation

and growth but reduces welfare after passing a threshold, as the negative effect from

a shrinking unskilled workforce and lower initial consumption level eventually domi-

nates.30 The socially optimal allocation of skilled labor supply is 14.36% of the population,

more than tripled comparing to the market equilibrium level of 4.04%. As more skilled

labor promotes innovation, the aggregate growth rate increases from 1.97% to 5.51%, and

the aggregate welfare improves dramatically by 16.85%.

A natural follow-up question is whether policymakers can find implementable subsidies

to recover the planner’s allocation and improve welfare. Here we propose a quality-

biased policy: subsidizing the skill. In particular, we consider two forms of skill subsidies.

One is an education subsidy, with which the government covers be ∈ [0, 100%] portion of

the education cost. The other is a skilled labor subsidy, with which the government covers

bh ∈ [0, 100%] portion of the skilled wage cost to innovating firms. Recall that young

workers choose whether to obtain skill based on the education cost and the skill premium.

Therefore, policymakers are able to implement any desired labor supply allocation with

proper combinations of be and bh. If the desired skill supply is high, simultaneous usage

of both subsidies is required. We formalize the argument into the following proposition.31

Proposition 3. For any given θ∗SP ∈ [1, θ∗CE), there exists a set G of different combinations of

(be, bh) ∈ [0, 1]2 to implement the allocation in a market equilibrium. Moreover,

(i) to implement the given θ∗SP, policymakers face a linear trade-off between be and bh;

(ii) when the talent threshold θ∗SP is low enough, the set G does not contain (0, bh) or (be, 0).

Lastly, we contrast the effects of “quality-biased” skill subsidies to quantity-based subsi-

dies in Appendix D.7.32 Different from quantity-based subsidies, the skill subsidies help

30Aggregate welfare is affected by intertemporal elasticity of substitution, ν. Appendix D.5 details how
we solve the planner’s problem, and displays the hump-shaped welfare curves under different values of ν.

31See proof of Proposition 3 in Appendix D.6.
32We also evaluate the effects of R&D tax credit, which turn out to be similar to quantity-based subsidies

in our framework.
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improve both innovation quantity and quality, and promote growth and welfare, as they

raise the skill supply and reduce equilibrium skill premium, therefore are biased toward

more skill-intensive radical innovations.

5 Conclusion

Motivated by the Chinese patent quantity surge and quality decline, we construct a Schum-

peterian growth model featuring heterogeneous innovations to study the impact on growth

and welfare of quantity-based subsidies widely adopted in China since the middle 2000s.

We decompose the impact into positive quantity and negative quality channels. The

model-based quantitative analysis shows that such subsidies reduce the aggregate wel-

fare by 3.31%, as the negative quality-crowding channel dominates. We further evaluate

welfare gains under a constrained planner’s problem, and propose quality-biased skill

subsidies which effectively recover the optimal allocation.

We necessarily abstract from other essential features, e.g., transition from imitation to in-

novation, to focus on the quantity-quality trade-off. In addition, the way skill accumula-

tion is modeled is simplified to keep the framework tractable. In reality, patent subsidies

work immediately, while building up a skill pool takes generations of time. Skill subsi-

dies can also take many forms in the real world, for example, attracting overseas-trained

talents to work at home seems an important channel for China’s technology catch-up. We

leave detailed investigations along these dimensions for future research.
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Online Appendix of “Haste Makes Waste? Quantity-Based

Subsidies under Heterogeneous Innovations”

(Not for Publication)

A Appendix: Data and Facts

A.1 Institutional Background and Patent Quantity

Table A.1 lists quantity targets set by Chinese central and local governments in the late

2000s and early 2010s.

Table A.1: Quantity Targets set by the Central and Selected Local Governments

Policy Year Target Period Quantity Target

Central Government
2010 2011-20 Patents to reach 2 mil. & rank Top 2 in the world in 2015

Patents per 1 mil. pop. to increase by 100% by 2015 and 300% by
2020

Beijing City
2010 2011-15 Patent applications (resp. grants) per 10,000 pop. to reach 20 (resp.

8) by 2015
2015 2016-20 Patents per 10,000 pop. to reach 80 by 2020

Shanghai City
2010 2011-20 Patent grants per 1 mil. pop. to reach 600, and patents per 10,000

pop. to reach 30, in 2015; both criteria to double in 2020
Guangdong Province

2007 2007-20 Patent applications per 1 mil. pop. to reach 200 in 2010 and to
increase more than 15% annually

Heilongjiang Province
2011 2011-20 Patents per 10,000 pop. to surpass 2.1 by 2015

Guizhou Province
2017 2016-20 Patents per 10,000 pop. to reach 2.5 by 2020

Data Source: The national targets are from National Patent Development Strategy 2011-2020. Local
targets are from local Intellectual Property Development Strategy or Five Year Plans.

Figure A.1 presents the number of applied & granted patents in China and other ma-

jor patent-holding countries. Table A.2 presents the number of researchers per million
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inhabitants in China and selected countries. Figure A.2 shows the number of patent ap-

plications per researcher in China, the US, and G5 countries. Lastly, Figure A.3 shows the

patent grant rate and number of patents that have been eventually granted per researcher.

Figure A.1: Number of Applied and Granted Patents in China and Advanced Economies
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Note: This figure shows the number of applied and granted patents in China and other major patent-
holding economies. The data source is World Intellectual Property Office (WIPO) IP Statistics Data Center.

Table A.2: Researchers per million Inhabitants, 2013

China US Europe Japan France Germany

(1) 1071.1 3984.4 2941.9 5194.8 4124.6 4355.4

(2) 0.2% 1.5% 1.8% 1.2% 1.7% 2.7%

Note: Row (1) shows full-time equivalent researchers per million
Inhabitants in 2013, and row (2) the share of Ph.D. degree holders
in the labor force. Data source: USESCO.ORG.
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Figure A.2: Number of Patent Applications per Researcher in China, US, and G5
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Note: Data source for No. of patents is WIPO, and for No. of full-time equivalent researchers is from
OECD.Stat. This figure shows the evolution of patent applications per researcher over time. G5 includes the
US, the UK, France, Germany, and Canada. It does not contain Japan or Italy as data on No. of researchers
for these two countries in the OECD.Stat database are under different definitions.

Figure A.3: Patent Grant Rate and Number of Patents-Eventually-Granted Per Researcher
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Note: This figure shows the patent grant rate, which is the fraction of applied patents in a given year that
are eventually granted before Oct. 2020 (panel (a)), and patents-eventually-granted per researcher, which
is the number of patent applications that are eventually granted per researcher (panel (b)). No. of patents
that are eventually granted is calculated from patent-level data from Innography and PatentsView databases.
To avoid the truncation issue, the figure only shows patents that were applied in or before 2014.
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A.2 Firm-Level Sample: Data Source, Construction, and Results

A.2.1 Data Source

Annual Survey of Industrial Enterprises (ASIE). Annual Survey of Industrial Enter-

prises (ASIE), conducted by the National Bureau of Statistics of China (NBS), contains

financial information for all state-owned enterprises, and private firms with sales above

5 million RMB before 2011 and 20 million RMB since 2011 in the industrial sector (also

referred to as the “above scale” industrial firms) for the periods 1998-2013.

Innography. Innography Patent Database covers information on over one hundred mil-

lion patents from various countries. In this paper, we restrict attention to patents that are

applied and eventually granted in China. If a patent is filed in China in year t and even-

tually granted in year t + 1, it consists of our sample of newly applied Chinese patents in

year t. We supplement the Innography database with patent data from Orbis Intellectual

Property.

Firm Innovation Activity Database. Firm Innovation Activity Database contains infor-

mation on innovation costs and R&D expenditures, and tax cuts from the Recognition of

High-Tech Enterprises, for all industrial firms that have innovation activities for the 2008-

2013 period. There are in total 394,381 observations within the seven-year time period,

covering approximately 120,000 unique firms.

A.2.2 Sample Construction

To construct the firm-level sample, we merge different data sources to ASIE manufactur-

ing firms. The sample construction process consists of the following three major steps.

Step 1: Construct the 1998-2013 ASIE Sample. We follow Brandt et al. (2012) to create

an unbalanced panel of firms between 1998 and 2013. We restrict the ASIE sample to the
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manufacturing industries, that all 4-digit CIC codes between 1300 and 4400. We drop all

firms with missing firm identification numbers, province, industry, age, or employment,

and drop those with negative values of age or revenue. The final ASIE sample, consisting

of 4,037,866 firm-level observations, is the foundation of our firm-level sample.

Step 2: Attach Patent Information to the ASIE Sample. We merge the patent-level

Innography Database to the ASIE sample by using information on institutional appli-

cants of patents. Table A.3 presents the number of patents for all and domestic firms. We

restrict attention to domestic firms which are favored when Chinese governments give

out subsidies (Haley and Haley, 2013).

Table A.3: Number of Patents in the Sample

All firms Domestic firms
Year Application Grant G/A Firm No. Grant % in all Firm No.

1998 687 412 59.97% 238 364 88.35% 217
1999 1,144 737 64.42% 316 623 84.53% 281
2000 1,831 1225 66.90% 449 1,068 87.18% 408
2001 3,011 2,169 72.04% 610 1,750 80.68% 549
2002 6,272 4,564 72.77% 963 3,066 67.18% 848
2003 9,916 6,360 64.14% 1,357 4,536 71.32% 1,189
2004 14,087 8,343 59.22% 1,799 5,901 70.73% 1,541
2005 19,751 12,124 61.38% 2,291 8,849 72.99% 1,930
2006 28,801 17,274 59.98% 3,192 12,672 73.36% 2,594
2007 37,106 22,122 59.62% 4,068 15,864 71.71% 3,238
2008 46,201 26,871 58.16% 6,071 19,533 72.69% 4,976
2009 53,886 31,431 58.33% 7,303 22,829 72.63% 5,940
2010 72,905 40,133 55.05% 10,422 29,689 73.98% 8,496
2011 98,555 52,366 53.13% 12,266 39,853 76.10% 10,020
2012 136,026 71,726 52.73% 15,565 55,273 77.06% 12,804
2013 165,874 87,304 52.64% 18,790 69,733 79.87% 15,785

Note: The “Grant” column denotes the number of patents that are applied and eventually
granted. “% in all” for domestic firms is the fraction of grant patents by domestic firms
in all firms.
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Step 3: Attach the Firm Innovation Activities Database to the ASIE Sample. For cali-

bration purposes, we further merge a supplementary Firm Innovation Activity Database,

available from 2008 to 2013, to the ASIE sample by using firms’ organization codes and

Chinese names.

A.2.3 Variable Construction

Types of Patents. In the benchmark, we label a Chinese patent as radical if (1) it has

been cited by as least one US patent, and (2) the gap of the application year between

the cited and citing patent lies within 5 years. Incremental patents are those that are not

radical.

Types of Firms. Firms are classified into two types: high- and low-type firms. High-

type firms are those with at least one radical patent from 2008-2013; otherwise, firms are

labeled as low-type.

SOE and Foreign Firms. A firm is a state-own enterprise (resp. a foreign firm) if either

(a) the controlling shareholder is the state (resp. foreign or from Hong Kong, Macau,

and Taiwan), or (b) the share of state (resp. foreign capital and capital from Hong Kong,

Macau, and Taiwan) in total capital is greater than 50%.

Skill Composition. We define the employment engaging in scientific activities (keji huodong

renyuan) as R&D personnel. Among all R&D personnel, we further categorize those with

medium or high professional titles (zhonggaoji zhicheng) as skilled personnel. Skill inten-

sity is then defined as the ratio of skilled personnel to total R&D personnel.
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A.2.4 Additional Tables and Figures

Figure A.4 shows the total number of patents and patents per researcher in our firm-level

sample. Same as the aggregate trend shown in Figure 2.1, there appears a speedup in

patents per researcher among ASIE firms since the late 2000s. Table A.4 shows the distri-

bution in forward citation codes of Chinese patents. Overall, more than 90% of forward

citations for Chinese patents come from other patents applied in China. US patents are

the second largest source of citations for Chinese patents, accounting for 7.22% of total

forward citations and much larger than the share for other areas.

Figure A.4: Patent Quantity For Industrial Firms
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Note: This figure shows the number of patents and patents per researcher (index, 2008=1) for ASIE firms.
There is no information on the number of researchers for industrial firms before 2011. By assuming that
the share of researchers in industrial firms in total researchers is constant, we divide the number of ASIE
patents by the number of national researchers, normalize such that the value in 2008 is 1, and present the
results in the right panel.

Table A.4: Distribution of Forward Citations for Chinese Patents

Code CN US TW JP EP KR GB DE AU FR

Fraction, % 90.73 7.22 0.73 0.44 0.32 0.17 0.07 0.03 0.03 0.03

Data source: Innography and Orbis Intellectual Property
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A.2.5 Robustness Check on Patent Quality Decline

Aggregate Trend: Alternative Definitions. Figure A.5 presents the trend of the share

of radical patents under four alternative definitions: (a) radical patents are those with

at least one forward citation from a US patent; (b) the condition in (a) plus that the gap

between grant years of the cited and citing patents are within 5 years; (c), the ratio of No.

of US forward citations and No. of all forward citations; (d) radical patents are defined as

those with a US patent as its family member. Definition (a) might suffer from truncation

bias, while (b)-(d) do not. Though the magnitude varies across different definitions, there

displays a rise-then-decline trend in all four series.

Figure A.5: Share of Radical Patents under Alternative Definitions
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Note: For ‘US fwc.’, a patent is defined as radical if it is even being cited by a US patent; For ‘US fwc.
(GG<=5)’, a patent is defined as radical if it is ever being cited by a US patent, and the gap in grant year
between the cited and citing patent is within 5 years; For ‘US family’, a patent is defined as radical if it has
one US patent as its simple family member; ‘USFwc/TotFwc’ denotes the fraction of US forward citations
in total forward citations.

Figure A.6 presents the trend of the relative quality of incremental to radical patents un-

der definitions (a), (b), and (d),33 all showing a similar flat-then-decline pattern. In Table

A.5, we further restrict to incremental patents and regress the log of forward citations re-

ceived at the patent level on IPC class-level incremental patent stocks, controlling for IPC

class-level radical patent stocks, IPC class, and year fixed effects. The results indicate a

33Under definition (c), one cannot properly label whether a patent is radical or incremental.
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significantly negative impact of incremental patent stock on incremental patents’ quality.

Figure A.6: Relative Quality of Incremental to Radical Patents
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Note: See footnote of Figure A.5.

Table A.5: Patent-Level Log Number of Forward Citations Received

(1) (2) (3)

IPC class-level log incremental patent stock -0.216∗∗∗ -0.146∗∗∗ -0.294∗∗∗

(-5.14) (-4.19) (-6.64)

IPC class-level log radical patent stock Yes Yes Yes
Year FE Yes Yes Yes
Patent Class FE Yes Yes Yes
R2 0.065 0.069 0.064
Observations 297552 300076 272864

Note: t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. This table
shows results regressing the log of forward citations received at the patent level, of
incremental patents, on IPC class-level incremental patent stocks, with IPC class-
level radical patent stocks, IPC class, and year fixed effects controlled. Columns
[1], [2], and [3] define incremental patents as without US citations within a five-
application-year window, without US family applications, and without US citations,
respectively. Robust standard errors clustered at the patent class level.

Next, we stick to the baseline definition, i.e., radical patents are cited by at least one US

patent, and the gap between the application years of the cited and citing patent is within

5 years, and confirm the robustness of the aggregate trend at more disaggregated levels.
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Domestic versus Foreign. Figure A.7 presents the two measures of patent quality for

domestic and foreign firms. For radical patent shares (in panel (a)), both firms experience

a rising trend in the late 1990s and early-to-middle 2000s. For the post-2008 period, while

there is a clear decline for domestic firms, the trend for foreign firms is less visible. That

the decline is more significant among domestic firms is consistent with existing research

pointing out that China favors indigenous firms when giving out subsidies (Haley and

Haley, 2013). As shown in panel (b), the decline in the relative quality of incremental to

radical patents is also more significant for domestic firms.

Figure A.7: Evolution of Patent Quality for Domestic and Foreign Firms
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Note: A firm is defined as foreign when the share of registered capital held by foreigners is no less than
50% or when foreigners is the controlling shareholder, and defined as domestic otherwise.

Exporters versus Non-Exporters. A firm is defined as an exporter if it ever exports from

1998 to 2013.34 Defined this way, exporters account for 65.59% of all patents. Figure

A.8 presents the share of radical patents for exporters and non-exporters. The radical

patent share for exporters is greater than for non-exporters, which is not surprising since

exporters are typically larger in size and more intensive in R&D. The trend for exporters

is quite similar to the aggregate one. For non-exporters, the radical patent share does

34We also tried to define exporters as firms that have an export-revenue ratio exceeding 50% in at least 1
year from 1998 to 2013. The results are qualitatively similar to patterns shown in the text.
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not show a clear pre-2008 trend, suggesting a much smaller learning effect for this group.

The post-2008 decline for non-exporters is also less significant, though there is a visible

decline since the year 2010. Figure A.9 shows the relative quality of incremental to radical

patents. Again, the post-2008 decline in relative quality is mainly driven by exporters.

Figure A.8: Share of Radical Patents for Exporters and Non-Exporters
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Note: A firm is defined as an exporter if it ever exports from 1998 to 2013.

Figure A.9: Relative Quality of Incremental to Radical Patents for Exporters and Non-
Exporters

.3
.3

5
.4

.4
5

.5

R
e
l.
 Q

. 
o
f 
In

c
re

m
e
n
ta

l 
to

 R
a
d
ic

a
l 
P

a
te

n
ts

1998 2001 2004 2007 2010 2013

Year

(a) Exporters

.3
5

.4
.4

5
.5

.5
5

R
e
l.
 Q

. 
o
f 
In

c
re

m
e
n
ta

l 
to

 R
a
d
ic

a
l 
P

a
te

n
ts

1998 2001 2004 2007 2010 2013

Year

(b) Non-Exporters

Note: see footnote of Figure A.8.
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Industry Heterogeneity. Figure A.10 presents the radical patent share for the light, elec-

tronics, and heavy industries. There is a clear rise-then-decline pattern for the light and

heavy industries. Radical patent share for electronics is roughly stable or shows a mild

decline in the post-2008 period. It, however, displays a clear decline compared to the pre-

2008 trend. In Figure A.11, we confirm that the relative quality of incremental to radical

patents is relatively stable before the mid-to-late 2000s and declines thereafter in all three

industries.

Figure A.10: Share of Radical Patents of Different Industries
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Note: This figure shows the radical patent share of the light, electronics, and heavy industries.

Figure A.11: Relative Quality of Incremental to Radical Patents of Different Industries

.3
.3

5
.4

.4
5

.5

1998 2001 2004 2007 2010 2013

Year

(a) Light Industry

.3
.3

5
.4

.4
5

1998 2001 2004 2007 2010 2013

Year

(b) Electronics Industry

.3
.3

5
.4

.4
5

.5

2000 2003 2006 2009 2012

Year

(c) Heavy Industry

Note: This figure shows the relative quality of incremental to radical patents of the light, electronics, and
heavy industries.

12



Different Patent Categories. Table A.6 shows patent numbers and shares for eight 1-

digit IPC section symbols, which we refer to as “categories”. There are eight categories,

with symbols ranging from A to H. Category A refers to “Human Necessities”; Cate-

gory B refers to “Performing Operation, Transporting”; Category C refers to “Chemistry,

Metallurgy”; Category D refers to “Textiles, Paper”; Category E refers to “Fixed Con-

structions”; Category F refers to “Mechanical Engineering, Lighting, Heating, Weapons,

Blasting”; Category G refers to “Physics”; Category H refers to “Electricity”. The largest

categories are H, C, and B, which account for 30.30%, 17.81%, and 17.20% of total patents

created by industrial firms.

Table A.6: No. and Share of Patents for Different Categories, 2000-2013

Category A B C D E F G H

No. 25,170 50,786 52,582 6,766 7,688 22,234 40,571 89,466

Share 8.52% 17.20% 17.81% 2.29% 2.60% 7.53% 13.74% 30.30%

Note: This table shows the number of patents and the share in total for each patent cat-
egory (IPC Section Symbols). Category A refers to “Human Necessities”; Category B
refers to “Performing Operation, Transporting”; Category C refers to “Chemistry, Met-
allurgy”; Category D refers to “Textiles, Paper”; Category E refers to “Fixed Construc-
tions”; Category F refers to “Mechanical Engineering, Lighting, Heating, Weapons, Blast-
ing”; Category G refers to “Physics”; Category H refers to “Electricity”.

Figure A.12 shows the radical patent share for 7 patent categories (i.e., 1-digit IPC Section

Symbols) from 2000-2013.35 As the number of patents in categories D and E is significantly

less than others, containing 6-7 thousand patents in total and less than 500 patents in most

of the sample years, we merge those two categories as a single one. For categories A, B, C,

D&E, H, or 5 out of the 7 categories, there is a decline in the post-2008 period especially

compared to the pre-2008 trend. Together, patents from these five categories account for

over 80% of the total patents. As for the relative quality of incremental to radical patents,

the flat-then-decline pattern exists for almost all patent classes, as shown in Figure A.13.

35We start from 2000 as there are less than 100 patents for most patent categories in 1998 and 1999. In rare
cases that the quality measure for a category in year t is significantly different from year t− 1 and t + 1, we
interpolate to obtain the value in year t.
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Figure A.12: Radical Patent Share for Different Categories
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Note: This figure shows the trend of radical patent share for different patent categories (IPC Section Sym-
bols). See note of Table A.6 for detailed meanings of each patent category.

Figure A.13: Relative Quality of Incremental to Radical Patents for Different Categories
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Note: This figure shows the trend of the relative quality of incremental to radical patents for different patent
categories (IPC Section Symbols). See note of Table A.6 for detailed meanings of each patent category.
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Entrants versus Incumbents. A firm is defined as an entrant in year t if its first (eventually-

granted) patent is applied in year t, and as an incumbent otherwise. Table A.7 shows the

number and share of patents owned by incumbents and entrants from 1998 to 2013. By

definition, entrants’ patent share equals 100% in 1998. Overall, the share of patents ac-

counted for by entrants does not show a rising trend over the post-2008 period. This

result, however, should be interpreted under the caveat that the data we use is for above-

scale industrial firms and it does not contain very small firms.

Table A.7: No. and Share of Patents by Entrants

Year 1998 2001 2004 2007 2009 2010 2011 2012 2013

No. 365 746 1,538 2,483 5,286 8,477 9,059 9,712 12,604
Share 100.00% 42.43% 25.69% 15.34% 23.00% 28.20% 22.45% 17.20% 17.75%

Note: A firm is defined as entrant in year t if its first (eventually-granted) patent is applied in year t.

Figure A.14 shows the trend of patent quality for incumbent firms and entrants. As seen

in panel (a), the rise-then-decline pattern in radical patent share is predominantly driven

by incumbents. For entrants, we actually find a flat or slightly rising trend from 1998-

2013. Confining to the later 2008-2013 period, there is no clear decline for entrants. If

we take away the jump in 2011, there is a moderate decline for entrants, but with a mag-

nitude much smaller than that of incumbents. In panel (b), the flat-then-decline trend

in the relative quality of incremental to radical patents is also predominantly driven by

incumbents. No clear trend can be discerned for entrants.
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Figure A.14: Evolution of Patent Quality for Incumbent Firms and Entrants
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Note: A firm is defined as an entrant in year t if its first (eventually-granted) patent is applied in year t.

Regressions With versus Without Firm Fixed Effects. To examine more closely the

post-2008 decline in radical patent share, we run a patent-level regression of the radi-

cal patent dummy against year (a trend variable) with [column (a)] and without [column

(b)] fixed effects. Table A.8 shows the results. The ratio between the coefficient in column

(b) and that in column (a) is informative on how much the aggregate decline is explained

by the within-firm component. The ratio is 74% for the 2010-2013 period, implying that

the post-2009 decline mainly occurs within firms.

Table A.8: Patent-Level Regression with and without Firm Fixed Effects

Period 2010-2013

(a) (b)

Year -0.0047∗∗∗ -0.0035∗∗∗

(0.0006) (0.0007)
Firm FE N Y

Obs. 197,885 186,101

Note: This table shows regression results in which the dependent variable is the radical patent
dummy and the main independent variable is the year trend. Note that firms that appear only once
in the sample are automatically dropped in the regression with firm fixed effects.

We also try to use the full sample data from 1998-2013 and regress the radical patent
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dummy against year dummies with and without firm fixed effects. Then using coef-

ficients for the year dummies, we estimate a pre-2008 trend and compare the relative

deviation of the actual coefficients in the post-2008 period from the predicted values ex-

trapolated from the pre-2008 trend. The average deviation from 2011-2013 is 1.07 in the

case without firm fixed effects, and 0.71 in the case with firm fixed effects. The latter ac-

counts for 66% of the former, which is consistent with the results in Table A.8.

For decline in the radical patent share that is not “within-firm”, one component is the

increase in the patent share of low-type firms. By definition, the radical patent share for

low-type firms is always zero, so there can be no within-firm decline for these firms. On

the other hand, creating more incremental patents by a high-type firm not only reduces

the radical patent share within the firm, but also increases its patent share among all

firms, therefore simultaneously leading to a within-firm and cross-firm effect, a property

featured in the data and captured by our model.

Internal versus External Patents. All (eventually granted) patents are used in the base-

line. We follow Akcigit and Kerr (2018) to divide all patents into internal versus external

ones based on backward citations. Specifically, we define the self-citation rate as the frac-

tion of self-citation in its total backward citations, with self-citation of a patent applied by

firm i in year t containing all backward citations that are applied between 1998 and year t

by firm i. Patents with a self-citation rate greater than 50% are defined as internal patents.

External patents are those that are not internal. Patents without backward citations are

regarded as external patents. As shown in Table A.9, the vast majority of Chinese patents

are external under the definition above. It is not surprising that both the radical patent

share and the relative quality of incremental to radical patents among external patents are

quite similar to that for all patents, as seen in Figure A.15.
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Table A.9: No. and Share of External Patents for Domestic Industrial Firms

Period No. of external patents No. of patents Share of external patents

1998-2013 279,800 296,254 94.45%
2011-2013 159,490 167,823 95.03%

Note: External patents are defined as those with a self-citation rate no greater than
50%.

Figure A.15: Evolution of Patent Quality among External Patents
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Note: External patents are defined as those with a self-citation rate no greater than 50%.

A.2.6 Skill Intensity for High- and Low-Type Firms

Table A.10 shows the average skill intensity for high- and low-type firms. It is clear that

high-type firms are more skill-intensive.

Table A.10: Skill Intensity for Firms of Different Types

2011 2012 2013 Average

Skill intensity of high-type firms 34.91% 34.53% 33.02% 34.12%
Skill intensity of low-type firms 26.83% 25.19% 24.69% 25.42%

Note: Skill intensity is defined as the fraction of R&D personnel with a
medium or senior professional title. To clear the effects of age and size, we first
run a firm-level regression of skill intensity against age and log(employment)
and then use the residual to obtain the numbers above.
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B Appendix: Model Derivations and Proofs

B.1 Education

With the presence of education subsidy be and skilled labor subsidy bh, young people

choose to invest in education and become skilled if and only if

e−(r−g+d)

r− g + d
wh

1− bh
− (1− be)

1− e−(r−g+d)

r− g + d
1
θξ

wh

1− bh
≥ w`

r− g + d
,

that is, obtaining education if and only if her type is above the threshold

θ∗ ≡ max

1− be

ξ

[
1− e−(r−g+d)

] (
e−(r−g+d) − (1− bh)

w`

wh

)−1

, 1

 .

We can further derive the mass of the four types of people in the economy: students,

skilled workers employed in education, skilled workers employed in the R&D sector,

and unskilled workers

hstudent = θ∗−2
(

1− e−d
)

L;

hteacher =
2θ∗−3

3ξ

(
1− e−d

)
L;

hR&D = θ∗−2e−dL− hteacher;

`supply =
(

1− θ∗−2
)

L.
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B.2 Step-Size and Firm Size Distribution

Start with the step-size distribution of incremental innovations. Denote Dτ the fraction

of product lines of distance τ, with τ = 1 representing a product line where the latest

innovation is radical. Under an invariant distribution,

STATE: INFLOW OUTFLOW

τ = 1: (1− D1)δd = D1δm

τ ≥ 2: Dτ−1δm = Dτ(δd + δm)

where δd and δm are aggregate creative destruction from radical and incremental innova-

tions, respectively. Denote δ the aggregate creative destruction rate, that is, δ ≡ δd + δm.

Under the invariant distribution, inflow equals outflow for each τ ≥ 1. It follows that,

Dτ =
δd
δ

(
δm

δ

)τ−1

, τ = 1, 2, ...

From this distribution, we can calculate the expected step-size of an incremental innova-

tion as

η̄ =
∞

∑
τ=1

Dτηατ−1 = η
/(

α +
1− α

δd/δ

)
.

For the firm size distribution, denote pH = p∗, pL = 1− p∗, xH = xHd + xHm and xL =

xLm. Then for firms of type j, stationarity implies that

STATE: INFLOW OUTFLOW

n = 0: µj,1 × δ = pj × xE

n = 1: pj × xE + µj,2 × 2δ = µj,1 ×
(
xj + δ

)
n ≥ 2: µj,n−1 × (n− 1)xj + µj,n+1 × (n + 1)δ = µj,n × n

(
xj + δ

)
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For n = 0, the inflow occurs when firms with only 1 product line are destroyed, and the

outflow is the successful innovations by entrants. For n = 1, the inflow contains firms

originally with 2 product lines losing 1 line and the entrants who successfully add 1 line;

while the outflow consists of 1-line firms that innovate and obtain additional lines or lose

existing lines due to creative destruction. A similar interpretation applies for n ≥ 2. From

these expressions, we have

µj,n =
pjxE

δ

(
xj

δ

)n−1 1
n

,

and

∞

∑
n=1

µj,n × n =
pjxE

δ− xj
.

B.3 Proof of Proposition 1

For a more general theoretical property, let’s assume that there are J ≥ 2 many types of

firms in the economy. And define Linej ≡ ∑
n

µj,n × n, that is, the total number of product

lines owned by type j firms.

As shown in B.2, stationarity requires that ∀j ∈ {1, 2, ..., J},

Linej =
pjxE

δ− xj
.

We plug in the definition of δ and get

Linej =
pjxE

∑
j′

Linej′xj′ + xE − xj
(eqn-[j])

with the requirement of
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∑
j

Linej = 1. (eqn-[x])

This is a system of J unknowns {Linej}J
j=1, and J + 1 equations.

Seemingly, we need an extra free variable such that it is a system of J + 1 unknowns and

J + 1 equations. However, we are going to prove that, for any given combinations of

xE > 0, {pj}J
j=1 ∈ (0, 1) and {xj}J

j=1 > 0, there always exists a {Linej}J
j=1 such that the

above J + 1 equations hold. The remaining is to show that, when eqn-[1] to eqn-[J-1] hold

and eqn-[x] is satisfied, the last equation, eqn-[J], shall hold automatically.

Eqn-[j] indicates that

(pj − Linej)xE = Linej

(
∑
j′

Linej′xj′ − xj

)
,

sum them up from j = 1 to J − 1. Then use the fact pJ = 1−
J−1
∑

j=1
pj, together with eqn-[x],

LineJ = 1−
J−1
∑

j=1
Linej, we have

(LineJ − pJ)xE = (1− LineJ)

(
∑
j′

Linej′xj′

)
−

J−1

∑
j=1

Linejxj.

For the R.H.S., we rearrange terms and get

(LineJ − pJ)xE = (1− LineJ)LineJxJ − LineJ

J−1

∑
j=1

Linejxj,

which is exactly the same as eqn-[J]

(pJ − LineJ)xE = LineJ

(
J

∑
j=1

Linejxj − xJ

)
.
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B.4 Value Functions and Proof of Proposition 2

As discussed in the main text, we focus on high-type firms which face a trade-off between

radical and incremental innovations. Again, for expositional convenience, we drop the

firm type subscript j. Guess that the value function takes the following form

V(Q, q̄) = ∑
ω

Aqω + nBq̄.

Substituting this conjectured form into the Bellman equation, we have

r

(
∑
ω

Aqω + nBq̄

)
− gnBq̄ =max

xd,xm
∑
ω

[
πqω − δ(Aqω + Bq̄)

]
+ nxd

[
A(1 + λ) + B

]
q̄

+ nxm
[
A(1 + η̄) + B

]
q̄− nR(xd, xm; zd, zm) + nbnq̄.

It follows that coefficients A and B satisfy the following conditions

A =
π

r + δ
;

(r− g + δ)B = max
xd,xm

xd
[
A(1 + λ) + B

]
+ xm

[
A(1 + η̄) + B

]
− R̂(xd, xm) + bn,

where R̂ ≡ R/q̄ is the detrended R&D cost per line. One can see that B is increasing in bn.

With the value function’s form, equation (10) in Proposition 2 follows immediately from

the first-order conditions with respect to xd and xm.

If the quantity-based subsidy is posted on the number of new patents instead of the stock,

i.e., nx× bx q̄, the value function and the relation between subsidy and B remain unaltered.

The only difference is that “innovation return” now becomes

A(1 + λ) + B + bx

A(1 + η̄) + B + bx
.
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C Appendix: Calibration

C.1 External Parameters

Table C.1 summarizes the values of all externally calibrated parameters and their sources.

Table C.1: Externally Calibrated Parameters

Para Value Equation Meaning Source

ρ 0.02 (1) time discount rate literature
ν 3 (1) intertemporal elasticity of substitution literature
ε 0.22 (2) E.o.S. in final good production profitability
L 1 total population normalization
φ 0.49 (3) innovation elasticity w.r.t. R&D external estimation
η αλ (5) initial step-size of incremental inno. assumption
d 0.03 death rate of the population years of working
u 25% corporate tax rate documentations
br 150% R&D tax credit multiplier documentations

C.2 Connect Innovation Step-Size to Patents’ Number of Forward Ci-

tations

In this section, we follow Akcigit and Kerr (2018) and show the map between innovation

step-size in the model and the number of forward citations in the patent data. Assume

that radical and incremental innovations (s = λ, ηατ−1) obtain a citation from each sub-

sequent patent with probability sκ. A radical innovation starts a new technology cluster,

which future citations build on, and renders older technology clusters obsolete. Denote

m(ω, t) the number of citable patents in product line ω, and M(t) =
∫ 1

0 m(ω, t)dω total

citable patents in period t. As m(ω, t) satisfies

m(ω, t + ∆t) = [m(t) + 1]δm∆t + 1 ∗ δd∆t + (1− δm∆t− δd∆t)m(t),

The law of motion for M(t) is
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M(ω, t + ∆t) = [M(t) + 1]δm∆t + 1 ∗ δd∆t + (1− δm∆t− δd∆t)M(t).

Imposing M(ω, t + ∆t) = M(ω, t) in steady state, we have M = δ
δd

. Denote Φτ,n the frac-

tion of incremental patents with step-size sτ = ηατ−1 and n citations, among all patents.

The inflow and outflow are

STATE: INFLOW OUTFLOW

n = 0: Gτ−1δm = MΦτ,0δd + MΦτ,0ηατ−1κδm

n = 1: MΦτ,n−1ηατ−1κδm = MΦτ,nδd + MΦτ,nηατ−1κδm

It follows that Φτ,0 = Gτ−1δm
Mδd+Msτκδm

, and Φτ,n = Φτ,0(
sτκδm

δd+sτκδm
)n. Note that at any point

in time, the number of τ − th incremental patents is Gτ = M δd
δ (

δm
δ )τ. Then at this point

of time, the fraction of incremental patents that have citation n, among all incremental

patents, is

f̃ (n; α, ηκ) =

∞
∑

τ=1
MΦτ,n

∞
∑

τ=1
Gτ

=
∞

∑
τ=1

δd
δ

(
δm

δ

)τ−1 δ

δd + sτκδm

(
sτκδm

δd + sτκδm

)n

Matching this distribution with that from data produces an estimate for α and ηκ.

The average citation for τ − th incremental patents is
∞
∑

n=0
Φτ,nn/

∞
∑

n=0
Φτ,n = sτκδm/δ. It

follows that the average citation for all incremental patents is η̄κδm/δ.

Similarly, denote Φλ,n the fraction of radical innovations with n citations. The associated

inflow and outflow are
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STATE: INFLOW OUTFLOW

n = 0: δd = MΦλ,0δm + MΦλ,0λκδm

n = 1: MΦλ,n−1 [λκδm + ψλκδd] = MΦλ,nδ + MΦλ,nλκδm

We then have that Φλ,0 = δd
Mδm+Mλκδm

and Φλ,n =
[

λκδm
δm+λκδm

]n
Φλ,0. The average citation

for radical innovations are
∞
∑

n=0
Φλ,nn/

∞
∑

n=0
Φλ,n = λκδm

δ . Therefore, we can use the ratio

between average forward citations received by incremental and radical patents to infer

the η̄/λ ratio.

C.3 Identification

To formally illustrate the identification of internally calibrated parameters, we conduct

two exercises. First, we show how the total sum of distance changes as we move one

parameter away from its benchmark value while keeping the others unchanged. Figure

C.1 summarizes the results. One can check that the total distance is well V-shaped with

respect to all parameters, with its minimum achieved at the benchmark value (dash line),

which implies that the identification is clear.

Second, in the main text, we picked a most informative moment for each of the parameters

based on model implications, despite the fact that all 11 parameters are jointly identified.

To support this argument, we check each of the 11 model-generated moments as a func-

tion of the corresponding parameter. Figure C.2 shows the results, the identification is

clear as well.
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Figure C.1: Total Distance w.r.t. Each Parameter
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Note: This figure shows how the total sum of distance (Y-axis) changes as we move each of the 11 parame-
ters (X-axis) away from its benchmark value, up and down by 10%, while keeping the others unchanged.

Figure C.2: Informative Moment w.r.t. Each Parameter
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Note: This figure checks the sensitivity of each of the 11 model-generated moments (Y-axis) as a function
of the corresponding parameter (X-axis). Again, each parameter is moved up and down by 10% from its
benchmark value, while keeping the others unchanged.
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C.4 More on Model Fit: Patent Stock, Relative Firms Size and the Quantity-

Quality Trade-off

Active Patent Stock. We construct the stock of active patents using patents’ forward

citation information. More specifically, we define the lifespan of a patent as the period

from its application year to the last year it receives a forward citation. The idea here is

essentially to regard an old patent as “inactive” or “dead” when it no longer contributes

to society’s knowledge creation.

For an eventually granted patent that was applied in year t0, if the application year asso-

ciated with its latest forward citation is t, then this patent is treated as “active” between

year t0 and t. If a patent does not receive any forward citation, we assume that it is

active only in its application year and becomes inactive in the subsequent periods. For

any given year, we then construct the patent-level creative destruction rate as the ratio

of newly granted patents and the active patent stock. As the active patent stock grows

rapidly, we tried the active patent stock in the current year, the active patent stock in the

previous year, and the two-year moving averages of the active patent stock in the two

consecutive years, which gives us a range of values. The average creative destruction rate

ranges from 30% to 34% in the 2011-2013 period. Since we look at patent-level creative de-

struction and China experienced a patent surge in that period, we consider the relatively

high rate reasonable.

Relative Firm Size. The model predicts that firms with a higher innovation intensity

have a larger expected size. Under the calibrated parameter values, the size ratio be-

tween average high- and low-type firms, measured by employment, revenue, or profit, is

1.332. Table C.2 shows the relative size ratio from 2011-2013 firm-level data. Our calibra-

tion captures the size difference well.
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Table C.2: Size Ratio between High- and
Low-Type Firms in the Data and the Model

Employment Revenue Profit

Data 1.139 1.249 1.420
Model 1.332 1.332 1.332

Note: This table reports the relative ratio for
variables of interest, between average high- and
low-type firms in the 2011-2013 period, and we
trim the bottom and the top 5 percent of the
sample.

We then check the model’s performance on the number of patents distributed among in-

novating firms. In the model, the number of patents corresponds to the number of prod-

uct lines, n. Similar to the measurement of patent-level creative destruction, we calculate

the patent stock of an individual firm in 2011-2013 by summing all active patents. Figure

C.3 shows the distribution of active patent stock among high- and low-type firms. We

underestimate the number of patents for high-type firms, but overall, the model matches

the data pattern well.

Figure C.3: Distribution of Patent Number among High- and Low-Type Firms
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Note: This figure shows the distribution of patent numbers among high- (panel (a)) and low-type (panel
(b)) firms. Patent stock is calculated as the sum of all active patents within the 2011-2013 period, and the
distribution of patent stock is then estimated for the two sub-groups.
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Magnitude of Quantity-Quality Trade-off. We provide evidence that the model-implied

magnitude of quantity-quality trade-off under the calibrated parameters is in line with

data, by exploiting firm-level variations from the Innocom Program. China initiated

many policies that aim to promote firm innovations around the mid-2000s. A critical

subsidy program China has initiated to promote firm innovations around the mid-2000s

is the recognition of High-Tech Enterprises (HTEs) under the InnoCom Program.36 Certi-

fied HTEs enjoy corporate tax cuts and various types of research and development subsi-

dies such as research grants and patent subsidies, which presumably affect their choices

over radical and incremental patents.

We employ a Difference-in-Difference (DID) methodology to examine the impact of HTE

recognition on high-type firms’ innovation choices.37 Our approach involved defining a

post dummy variable equal to 1 for an HTE firm if the observation year was on or after

the year the firm obtained the HTE title for the first time, and 0 otherwise. In contrast, for

a Non-HTE firm, the post dummy is always 0. Furthermore, we only considered HTEs

with at least one prior year and one post year (including the recognition year) to enable

meaningful before-after comparisons. We then regress (log) the share of radical patents

on the HTE dummy, the interaction term between the HTE dummy and post dummy,

which is the key variable of our interest, controlling for (log) employment, (log) revenue,

(log) assets as well as year, location (province), industry, ownership types and established

year fixed effects. Robust standard errors are clustered at the firm level.

Our DID regression analysis reveals a 24.10% decline in its share of radical patents af-

ter a high-type firm receives HTE recognition. We further conduct an event study using

36Among the qualifications to become an HTE, the most important criteria are: (1) firms own patents
on their core technology and use such core technology on their main production lines where patents can
be invented, transferred, purchased or via M&A, (2) R&D related personnel is no less than 10% of the
employers, and (3) depending on the level of total sales, R&D expenses must reach a certain amount.

37By definition, low-type firms are those who create only incremental patents, so their radical patent
share is unaffected.
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year zero as the treatment year to confirm the parallel trends in the pre-treatment period.

Figure C.4 displays the results, indicating no apparent trends during the pre-treatment

periods. However, during the post-treatment periods, we observed a clear decline in the

firm’s radical patent share, with most of the point estimates being significant.38

Figure C.4: Event Study
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Correspondingly, we extend the model to include four types of firms: high-type & HTE,

high-type & non-HTE, low-type & HTE, low-type & non-HTE. On top of the general

quantity-based subsidies eligible for all, HTE firms are rewarded more: bHTE
n > bnon-HTE

n .

Consistent with the data, we give each type a 55% chance of HTE recognition. We then

quantify the extended model’s two extra parameters, bHTE
n = 0.034 and bnon-HTE

n = 0.019,

according to the observed subsidy differences between HTE and non-HTEs, while keep-

ing the remaining parameters at their benchmark values. The extended model generates

a 26.55% decline in its share of radical innovations once a high-type firm receives HTE

recognition, quite close to that in the data.

38To maintain a sufficiently large sample size for our DID regression and event study, we choose not
to apply the 5-year restriction in application years between the cited and citing patents. This should not
cause bias as in the regression we include year fixed effects, which resolves the truncation issue. If we
had imposed the 5-year restriction, though, one-third of the observations would’ve been lost, and the DID
coefficient became -18.7%, significant at 5% level.
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D Appendix: Quantitative Analysis

D.1 Estimating the Magnitude of Patent Quantity Surge and Quality

Decline

As shown in Figure A.4, the quantity of patents per researcher increases at a faster rate

in the post-2008 period than in the pre-2008 period, while panel (a) in Figure 2.2 shows

a clear post-2008 decline in the share of radical patents comparing to the pre-2008 trend.

To estimate the magnitude of patent quantity increase above, and of radical share below,

their natural trends in the post-2008 period, we first fit the pre-2008 data with a linear

trend and then use that trend to extrapolate to obtain the “natural” level for years after

2008 trend. Then by calculating the deviation of the actual level from 2011 to 2013 from

the predicted values in relative terms, we obtain the estimation of the magnitude of patent

surge above the trend, and of radical share decline below the trend. The estimated quan-

tity increase and radical share decline are 34.57% and 40.89% respectively. For the relative

quality of incremental to radical patents (panel (b) in Figure 2.2), the pre-2008 linear trend

turns out to be insignificant, so we calculate a 20.27% decline as the relative change of the

2011-2013 average from the 2006-2008 average.

D.2 Key Parameters for the Growth and Welfare Implications

The baseline model finds a negative growth and welfare effect of quantity-based subsi-

dies. The assumption of scarce research time, and parameter values about the degree of

quality decay and heterogeneity in skill intensities, determine the strength of quality and

quantity channels and the sign of the net impact. We counterfactually shut down each

of the three margins to illustrate its importance on the findings presented in Section 4.2.

Table D.1 summarizes the results.
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Table D.1: Pre vs. Post Changes when Corresponding Margins are Shut
Down

Parameter Margin ∆δ−xE ∆δd/δ ∆η̄/λ ∆g ∆welfare

e research time 6.36% -0.24% -0.06% 0.21 p.p. 0.29%
α quality decay 9.34% -41.58% 0.00% -0.05 p.p. -1.92%

γd, γm skill intensity 8.77% -12.49% -8.36% -0.04 p.p. -1.79%

baseline results 10.14% -22.91% -15.28% -0.19 p.p. -3.31%

Note: ∆ represents changes in the variable from the counterfactual (without bn) to
the benchmark economy (with bn) when the corresponding margin is shut down. We
present ∆g in absolute percentage point (p.p.) changes, while the others are presented
in relative percentage changes (%).

The first margin regards research time, e. As indicated by the R&D cost function, the

scarceness of e helps generate a strong firm-level quantity-quality trade-off. Once we

shut it down, i.e., taking e out from the R&D production function, both quality channels

are substantially weakened, and the growth and welfare implications are completely re-

versed (row 1).

The second margin regards innovation quality decay, α. From the growth decomposi-

tion in Table 4.4, we already demonstrated that the negative quality-crowding channel is

quantitatively dominant. Slightly different from what we did with that decomposition,

here we shut down the quality decay margin by setting α = 1 and fixing η = 0.053, i.e.,

the baseline level of η̄. As a result, the quality-crowding channel is eliminated, and the

growth and welfare implications are largely weakened (row 2).

The last is a pair of parameters regarding skill intensity, γd & γm. As explained by Propo-

sition 2, the skill intensity difference is through which the general equilibrium skill pre-

mium effect works. We shut down this margin by setting γd = γm = 0.453, that is, the

baseline value of γm.39 To make a reasonable comparison, we also adjust zHd = 0.970

39Results remain similar if we set γd and γm to the baseline value of γd = 0.796, so we don’t present them
here.
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to restore the baseline level of radical innovation share δd/δ. Consequently, both quality

channels are largely weakened, and so are the growth and welfare implications (row 3).

Other parameters, or margins, may also affect the growth and welfare implications to

some extent. For example, the entrant’s overhead investment, or the R&D tax credit

multiplier. However, their effects are secondary compared to the three key parameters

mentioned above.

D.3 Extension: Decreasing Return to Scale

In the baseline model, innovation cost scales up linearly with firm size, so that size of a

firm does not impact its innovation intensities. While this simplification delivers a clean

characterization of the firm-level quantity-quality trade-off and facilitates aggregation, it

might lead to bias in policy evaluations. To alleviate this concern, we extend the baseline

model to decreasing return to scale (D.R.S.) and re-evaluate the effects of quantity-based

innovation subsidies.

Setting. We assume a more general innovation production function with size-dependent

R&D productivity

Xi = zi(n) n1−φ
(

ei hγi
i `1−γi

i

)φ
,

where zi(n) = zin−ψi , for i = d, m. Parameters ψd, ψm > 0 govern the speed of pro-

ductivity decay w.r.t. firm size.40 Similarly, we can derive the function of R&D cost per

line

R(xd, xm; n) =
[
Θd(n)

1
2 + Θm(n)

1
2

]2
,

but Θd and Θm are now size-dependent

40This specification is effectively assuming Xi = zi n1−φ−ψi
(

ei hγi
i `1−γi

i

)φ
, for i = d, m.
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Θi(n) = ∆i

(
wh
)γi
(

w`
)1−γi

(
xi

zi(n)

) 1
φ

, for i = d, m.

Now that the R&D cost per line is size-dependent, the value function takes the form

V(Q, q̄) = ∑
ω

Aqω + Bnq̄.

To make a comparison, our benchmark case is where Bn = n× B.

Again, it is easy to verify that

A =
π

r + δ
,

while the sequence Bn solves

(r− g)
Bn

n
= δ(Bn−1 − Bn) + bn

+ max
xd,xm

xd
[
A(1 + λ) + Bn+1 − Bn

]
+ xm

[
A(1 + η̄) + Bn+1 − Bn

]
− R̂(xd, xm, n),

where R̂ ≡ R/q̄ is the detrended R&D cost per line. Lastly, a similar but generalized

version of Proposition 2 can be derived, that is

xd(n)
xm(n)

∝
A(1 + λ) + Bn+1 − Bn

A(1 + η̄) + Bn+1 − Bn︸ ︷︷ ︸
innovation return

×
(

wh

w`

)−(γd−γm)

︸ ︷︷ ︸
input structure

× zd(n)
zm(n)︸ ︷︷ ︸

R&D productivity

.

Here we have an extra “R&D productivity” term, as the relative productivity ratio is no

longer a constant. In conclusion, the change does not alter the quantity-quality trade-off

facing innovating firms, except that the magnitude now depends on firm size.

35



Calibration. We assume identical ψm for both high- and low-type firms to reduce pa-

rameters. To discipline the values of ψd and ψm, we first estimate two regressions regard-

ing the elasticity of innovation quantity and quality w.r.t. firm size

New Patent f ,t

emp f ,t
= β0 − 0.0411∗∗∗︸ ︷︷ ︸

(s.e. 0.0011)

× ln(emp f ,t) + FE1
f ,t + ε f ,t;

Radical Patent Share f ,t = β0 − 0.0293∗∗∗︸ ︷︷ ︸
(s.e. 0.0024)

× ln(emp f ,t) + FE2
f ,t + ε f ,t,

where FE2
f ,t contains year and industry fixed effects, and FE1

f ,t further includes a dummy

for high-type firms. We then calibrate the values of ψd and ψm to match the two elasticity

coefficients in the model and the data.

Results. The calibrated ψd = 0.061 and ψm = 0.055, which suggest a rather mild D.R.S.

among Chinese innovating firms, comparing to the values, ψd = ψm = 0.105, reported in

Akcigit and Kerr (2018) regarding US firms. For better comparison with the baseline case,

we also apply a common factor ψz = 1.066 to scale up values of R&D productivity, to

restore the baseline level of aggregate creative destruction rate. All the rest of the param-

eters are kept at their baseline values. Table D.2 & D.3 replicate the growth and welfare

implications of quantity-based subsidies, i.e., Table 4.3 & 4.4 in the main text. The results

are quite close to the baseline case.

Table D.2: Impact of Quantity-based Subsidies on Innovation Quantity and
Quality under D.R.S.

Variable Meaning Model C.F. ∆Model ∆Data
∆Model
∆Data

δ− xE incumbent innovation 25.43% 23.16% 9.80% 34.57% 28.35%
δd/δ radical share 7.37% 9.51% -22.50% -40.89% 55.03%
η̄/λ step-size ratio 31.45% 37.20% -15.46% -20.27% 76.27%

Note: ∆Model represents changes from the counterfactual to the model benchmark, ∆Data
is changes between the pre- and post-2008 period, both columns are presented in relative
terms. Step-size ratio denotes the relative step-size of incremental to radical innovations.
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Table D.3: Growth Decomposition under D.R.S.

∆Growth (i) quantity (ii) quality-composition (iii) quality-crowding

-0.18 0.15 -0.06 -0.24 (p.p.)
-83.33% 33.33% 133.33%

Note: For each of the channels, we add the corresponding change in (i) δ; (ii) δd/δ;
(iii) η̄ to the pre-2008 economy, and see how it affects the aggregate growth rate. The
second row shows the contribution of each channel, calculated by dividing the corre-
sponding number by -0.18 p.p.

D.4 Extension: Internal Innovations

In the baseline model, all innovations (patents) trigger creative destruction, i.e., being

external. We made this assumption based on the observation that the vast majority of

Chinese patents are external ones (Table A.9). In this section, we explore how the model

would perform when internal innovations are allowed.

Setting. We add a third internal innovation choice for all incumbent firms, high- or low-

type. In particular, internal innovations arrive at the following Poisson flow rate

Xs = zsn1−φ
(

hγs
s `1−γs

s

)φ
,

where the subscript s stands for “self-improvement”. The arrival of an internal innovation

improves the quality of a product line owned by the firm by a fixed step-size λs > 0. The

setup gives us an R&D cost per line similar to that assumed in Akcigit and Kerr (2018)

R(xd, xm, xs; zd, zm, zs) =
[
Θd(xd)

1
2 + Θm(xm)

1
2
]2

︸ ︷︷ ︸
external innovation cost

+ Θs(xs)︸ ︷︷ ︸
internal innovation cost

,

where Θi(xi) ≡ ∆i
(
wh)γi (w`

)1−γi (xi/zi)
1
φ and ∆i ≡ γ

−γi
i (1− γi)

γi−1, for i = d, m, s.

The value function still takes the form V(Q, q̄) = ∑
ω

Aqω + nBq̄, and the return for inter-

nal innovations is Aλs. Quantity-based subsidies affect the relative return of internal vs.
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external innovations through competing forces, e.g., B and η̄. The overall effect, however,

is an issue we address quantitatively.

Before quantifying the model, we introduce some extra notations regarding internal in-

novations and aggregation. Denote ιs the aggregate internal innovation rate, we have

ιs = ∑
j

∑
n

µj,n × nxjs,

where xjs denotes the internal innovation intensity of the type j = H, L firm.

The economy’s aggregate innovation rate is ι = δd + δm + ιs, while δ = δd + δm still

denotes the aggregate creative destruction rate. The aggregate growth rate is given by

g = δdλ + δmη̄ + ιsλs.

We follow the baseline approach to decompose changes in g into three channels

∆g = ∆ι×
(

δd
ι

λ +
δm

ι
η̄ +

ιs
ι

λs

)
︸ ︷︷ ︸

(i) quantity

+ ι× δ

ι
×
[

∆
δd
δ
× (λ− η̄)

]
+ ι× ∆

δ

ι
×
(

δd
δ

λ +
δm

δ
η̄ − λs

)
︸ ︷︷ ︸

(ii) quality-composition

+ ι× δ

ι
×
[(

1− δd
δ

)
× ∆η̄

]
︸ ︷︷ ︸

(iii) quality-crowding

.

The quantity channel now refers to change in the aggregate innovation rate ι; the quality-

composition channel summarizes changes in the weights δd/δ and δ/ι;41 the quality-crowding

channel still refers to the change in the average productivity impact of incremental inno-

vations, η̄.

41The former is the weight of radical innovations within external innovations, while the latter is the
weight of external innovations among total innovations. Under our calibration, the quality-composition effect
is mainly driven by its first component.
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Calibration. We assume identical γs, zs, λs for both high- and low-type firms to reduce

the number of parameters. We further assume γs = γm, i.e., internal innovations have the

same skill intensity as the external incremental ones. That leaves us with two parameters,

zs and λs, which we calibrate jointly by matching the share of internal innovations and the

average citation ratio between internal and external radical patents. For better compari-

son with the baseline case, we also apply a common scale factor ψz on zHd, zHm and zLm,

to restore the baseline level of aggregate innovation rate. All the rest of the parameters

are kept at their baseline values.

Results with CN Internal Patent Share. We first take the model to the Chinese patent

data. In 2011-2013, the share of internal patents in China is 4.97%, and the average cita-

tion ratio between internal and external radical patents is 0.403. These moments produce

an internal innovation productivity of zs = 1.294 and a step-size of λs = 6.36%. The com-

mon scale factor required to restore the baseline aggregate innovation rate is ψz = 0.951.

Table D.4 reports the impact of subsidies on innovation quantity and quality, with an ex-

tra row documenting change in the share of internal innovations, while Table D.5 reports

the impact on growth.42

The results remain very close to the baseline case, reaffirming our strategy of focusing

on external innovations in the Chinese context. Moreover, the extended model is able to

replicate the decline in the share of internal patents in China, which drops from 6.45%

pre-2008 to 4.97% post-2008, or a relative decline of 22.95%. In our quantified model, the

introduction of quantity-based subsidies causes firms to focus more on external innova-

tions, which crowd out internal innovations through general equilibrium pricing effects.

42In the Chinese sample, the radical patent share within external patents is rather close to the baseline
where we do not distinguish internal versus external patents, hence we stick to its baseline values for the
convenience of comparison.
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Table D.4: Impact of Quantity-based Subsidies on Innovation Quantity and
Quality with CN Internal Patent Share

Variable Meaning Model C.F. ∆Model ∆Data
∆Model
∆Data

ι− xE incumbent innovation 25.55% 23.46% 8.91% 34.57% 25.77%
δd/δ radical within external 8.08% 10.45% -22.68% -40.89% 55.47%
η̄/λ step-size ratio 33.47% 39.42% -15.09% -20.27% 74.44%
ιs/ι internal share 4.97% 5.79% -14.16% -22.95% 61.70%

Note: ∆Model represents changes from the counterfactual to the model benchmark, ∆Data
is changes between the pre- and post-2008 period, both columns are presented in relative
terms. Step-size ratio denotes the relative step-size of incremental to radical innovations.

Table D.5: Growth Decomposition with CN Internal Patent Share

∆Growth (i) quantity (ii) quality-composition (iii) quality-crowding

-0.18 0.15 -0.07 -0.24 (p.p.)
-83.33% 38.89% 133.33%

Note: For each of the channels, we add the corresponding change in (i) ι; (ii) δd/δ and
δ/ι; (iii) η̄ to the pre-2008 economy, and see how it affects the aggregate growth rate.
The second row shows the contribution of each channel, calculated by dividing the
corresponding number by -0.18 p.p.

All the growth-decomposition channels are weakened, so as the growth and welfare loss

from quantity-based subsidies. The magnitude, though, is rather small, as the share of

internal innovations in China is negligible. Many Chinese firms in that period of time

had very few patents of their own to cite. Mechanically, this leads to a low internal patent

share. We leave a detailed discussion on why the growth-decomposition channels are

weakened in the following exercise with the US internal patent share.

Results with US Internal Patent Share. Due to the low internal patent share in China,

the quantified model generates very similar results to that in the baseline case. As a com-

parison, Akcigit and Kerr (2018) reports that the US internal patent share is 21.5%. We

further conduct a numerical exercise, targeting the share of internal innovations at the US

level. This gives a higher internal innovation productivity of zs = 2.506, and a common
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scale factor of ψz = 0.783 to restore the baseline aggregate innovation rate. Tables D.6 and

D.7 report the impact of subsidies on innovation quantity and quality, and on growth.

Table D.6: Impact of Quantity-based Subsidies on Innovation Quantity and
Quality with US Internal Patent Share

Variable Meaning Model C.F. ∆Model ∆Data
∆Model
∆Data

ι− xE incumbent innovation 25.53% 24.31% 5.02% 34.57% 14.52%
δd/δ radical within external 8.46% 10.76% -21.38% -40.89% 52.29%
η̄/λ step-size ratio 34.49% 40.11% -14.01% -20.27% 69.12%
ιs/ι internal share 21.50% 24.22% -11.23% -22.95% 48.93%

Note: ∆Model represents changes from the counterfactual to the model benchmark, ∆Data
is changes between the pre- and post-2008 period, both columns are presented in relative
terms. Step-size ratio denotes the relative step-size of incremental to radical innovations.

Table D.7: Growth Decomposition with US Internal Patent Share

∆Growth (i) quantity (ii) quality-composition (iii) quality-crowding

-0.16 0.09 -0.04 -0.19 (p.p.)
-56.25% 25.00% 118.75%

Note: For each of the channels, we add the corresponding change in (i) ι; (ii) δd/δ and
δ/ι; (iii) η̄ to the pre-2008 economy, and see how it affects the aggregate growth rate.
The second row shows the contribution of each channel, calculated by dividing the
corresponding number by -0.16 p.p.

The weakening of all the growth-decomposition channels is more evident under the US

calibration. As discussed, subsidies cause firms to pursue more external innovations,

which pushes up wages and crowds out internal innovations in the general equilibrium.

Hence the increase in total innovations ι is smaller than that in external ones δ, leading to

a weakened quantity effect. As the decomposition formula shows, the importance of the

quality effects hinges on the rate of creative destruction. Under the US calibration where

internal patent share is high and creative destruction rate is relatively low, the quality-

crowding effect, though still negative and dominant, inflicts less growth and welfare loss.

However, even under the US calibration, the growth rate decline caused by subsidies
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(-0.16 p.p.) is close to the baseline case (-0.19 p.p.), and the dominant force is still the

quality-crowding channel. That again affirms the robustness of our baseline conclusions.

D.5 Social Optimum under Different Values of ν

We solve the planner’s problem by using a brutal grid search on different values of θ∗. At

each value, the supply of skilled and unskilled labor are determined as in Appendix B.1.

We then let the demand side of the markets run until they all clear. The key difference

between the planner’s problem and the market equilibrium is that, skill premium in the

planner’s problem does not necessarily yield the θ∗SP picked by the planner. We follow

the literature and try ν ∈ [2, 5]. Figure D.1 shows that social welfare is well hump-shaped

w.r.t. θ∗. Moreover, the smaller ν is, the earlier welfare reaches its peak.

Figure D.1: Social Welfare as a Function of θ∗
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Note: Under each value of ν, we solve the market equilibrium and normalize the corresponding welfare
level to 100%.

D.6 Proof of Proposition 3

To implement θ∗SP, we need to find combinations of (be, bh) which solve
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1− be

ξ

[
1− e−(r−g+d)

] (
e−(r−g+d) − (1− bh)

w`

wh

)−1

= θ∗SP, (13)

which can be rearranged to

bh = −1− e−(r−g+d)

ξθ∗SP

wh

w`
be +

1− (1 + ξθ∗SP)e
−(r−g+d)

ξθ∗SP

wh

w`
+ 1.

That is, policymakers face a linear trade-off between be and bh when implementing θ∗SP,

while the slope of trade-off is endogenous.

To see that both be and bh are necessary if θ∗SP is low, we further examine the left-hand

side (LHS) of equation (13). As shown in our quantitative analysis, the social planner’s

allocation is featured by high growth rate g and low skill premium wh/w`. Moreover, the

lower θ∗SP is, the higher (lower) growth rate (skill premium) is. One can derive

LHS(be = 0, bh = 1) =
e(r−g+d) − 1

ξ
,

which is, the lowest θ∗ a competitive equilibrium can reach without education subsidy.

As θ∗SP approaches 1, the difference between equilibrium interest rate and growth rate,

r− g = ρ + (ν− 1)× g, becomes greater, which eventually forces LHS(be = 0, bh = 1) to

stay above the desired θ∗SP. Thus, education subsidy is necessary if we want to implement

a low θ∗SP.

A necessary condition for equation (13) to hold is that its LHS stays positive, which in

turn requires

wh

w`
> (1− bh)e(r−g+d).

Without skilled labor subsidy, i.e., bh = 0, this condition will be violated eventually since
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the skill premium approaches 1 when θ∗SP approaches 1. Thus, skilled labor subsidy is

also necessary if the θ∗SP to be implemented is low. For example, to implement the socially

optimal θ∗SP in our benchmark case, policymakers can choose (be, bh) located on the solid

line in Figure D.2. Since the θ∗SP is fairly low, policymakers need the workhorse of both

subsidies to implement the desired allocation.

Figure D.2: Combinations of (be, bh) to Implement θ∗SP = 2.6.
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D.7 Subsidy Comparison

Here we compare the effects of various innovation subsidies in the model. More specifi-

cally, we have four kinds of subsidies: quantity-based subsidy bn; generic R&D tax credit

br; education subsidy be; and skilled labor subsidy bh. We raise the magnitude of each

subsidy by a small amount (5 percent) and check the changes in several important mo-

ments. Table D.8 summarizes the results.

The generic R&D tax credit, br, once strengthened, results in more R&D trials, and higher

innovation quantity, but deteriorating innovation quality. Similar to the quantity-based

subsidy, R&D tax credit is “quantity-biased” since it cannot distinguish between R&D
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Table D.8: Effects from Strengthening the Subsidies

Variable Meaning B.M. bn+5% br+5% be+5% bh+5%

R(x)/Vadd average R&D intensity 15.84% 16.02% 16.26% 15.73% 15.75%
δd/δ radical share 8.01% 7.91% 7.83% 8.63% 8.51%

wh/w` skill premium 2.43 2.44 2.45 2.38 2.39
g TFP growth rate 1.97% 1.96% 1.96% 2.07% 2.05%
U social welfare 100% 99.80% 99.66% 101.14% 100.93%

Note: We strengthen each of the subsidies by 5 percent from the benchmark level while keep-
ing others unchanged. The benchmark level of welfare is normalized to 100%.

expenditures on radical and incremental innovations. As a consequence, both subsidies

contribute negatively to welfare if they were strengthened from their current levels.

Conversely, the two “quality-biased” subsidies, be and bh, can effectively improve wel-

fare by raising the skilled labor supply, reducing skill premium, and encouraging radical

innovations. They effectively improve both the quantity and quality of innovations.
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